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Abstract: - This paper has four main goals: (i) to describe in detail a new architecture to implement 
soft-decision, information-set-based decoders purely in hardware; (ii) to investigate the effects of 
quantization of the received word on the decoder performance, calculating the minimum number of 
bits that should be adopted; (iii) to present a strategy for optimizing the choice of candidate 
codewords, allowing the selection of a small set with a very high probability of containing the best 
candidate; and (iv) to present a new acceptance criterion that is both highly efficient and well-suited 
for hardware implementations.The proposed architecture can be used to implement any linear block 
decoder and is shown to be highly area-efficient, with the C(48,24,12) code occupying only 20% of 
the smallest FPGA in the Stratix IV family. It is also shown that there is very little to gain by using 
more than 3 quantization bits, and that sets as small as 3% of all possible values suffice to obtain 
essentially the same results as true MLD. The presented acceptance criterion reduces in 96.8% the 
number of candidates that must be evaluated for the C(24,12,8) code, with performance difference 
relative to the Taipale-Pursley criterion never larger than 12%.  

 
Key-Words: -Block codes, error correcting codes, information set, decoder, hardware, FPGA. 
 
1 Introduction 
No matter how well a decoding algorithm for error 
correcting codes performs, it is of little use if its 
complexity prevents it from being implemented. A 
notable example is LDPC codes [1], proposed by 
Gallager in the 1960s, whose implementation only 
became viable in recent years, making it now one of 
the most intensely studied classes of error-correcting 
codes [2]. 

Most decoding algorithms for error-correcting 
block codes use only hard decisions to demodulate 
received symbols [3]. Although this approach 
simplifies the decoding procedure, the use of analog 
information may improve decoding performance up 
to 3 dB in the case of Gaussian channels, and up to 
10 dB on Rayleigh fading channels [4]. On the 
downside, it increases the demand for computational 
resources. Examples of algorithms that exploit this 
extra information are Generalized Minimum 
Distance (GMD) [5] and its variants [3].  

Especially in iterative algorithms, there is usually 
a tradeoff between throughput, error correction 

performance, and computational resources. In order 
to improve error correction, one can increase the 
number of iterations or use additional information 
(e.g., analog levels of the received symbols). In 
order to improve throughput, one can accept a lower 
error correcting performance or use more 
computational power. When both error correction 
and throughput must be improved, one possible 
solution is to implement the algorithms directly in 
hardware. Arithmetic operations that require a large 
number of CPU cycles when implemented in 
software can be performed in a single cycle when 
dedicated hardware is available. 

If computational power is not a limiting 
resource, maximum-likelihood decoding (MLD) is 
an optimal decoding procedure. However, since it 
involves iterating through all possible codewords, 
its computational cost is prohibitive. In order to 
make this approach practical, the number of 
candidates evaluated need to be reduced, at the 
expense of an inferior decoding performance. 

One approach to reduce the number of 
computations is the use of anacceptance criterion. 
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The basic idea is to check the decoding efficiency 
for each processed candidate, interrupting the search 
when a predefined performance level has been 
achieved. 

This paper describes a design strategy that makes 
viable hardware implementations of information-
set-based decoders with near-MLD performance. 
This is achieved through four main developments: 
(1) a criterion that reduces the number of candidate 
codewords, without significant performance loss; 
(2) a modified, hardware-friendlier version of the 
Dorsch decoding algorithm; (3) detailed circuit 
analysis and optimization in all critical parts (matrix 
manipulators, data sorter, data memory, and data 
path) that comprise the final circuit; and (4) a 
hardware-oriented acceptance criterion, optimized 
for physical implementation and requiring only a 
simple test in the final stage to check whether a 
given candidate is the maximum-likelihood output 
of the decoder. The final hardware implementation 
is described in detail, enabling the adoption of these 
techniques in similar high-performance decoders. 

The paper organization is as follows. Section 2 
introduces the fundamentals of information-
setdecoding. Section 3 introduces a basic hardware 
architecture that implementsthe original Dorsch 
decoding algorithm. The next three sections discuss 
alternative ways to improve the decoder 
performance while still maintaining it suitable for a 
hardware implementation. Section 4 analyses the 
effects of quantizing the received word in the 
decoder performance. Section 5 presents a method 
to choose a small number of candidate codewords 
that yield a performance close to MLD. Section 6 
presents a new acceptance criterion that is suited for 
a hardware implementation. Section 7 presents the 
final hardware architecture, encompassing all three 
improvements. Section 8 presents the results 
obtained by synthesizing both implementations, and 
section 9 summarizes the conclusions. 
 
2 Information-Set Decoding 
Consider a C(n, k, dHmin) linear block code with 
codewords ci (i = 0 to 2k−1), minimum Hamming 
distance dHmin, and generator matrix G (of size k×n). 
The encoding procedure consists in multiplying a 
message vector u (with k bits) by G to produce a 
corresponding codeword c ∈C (with n bits). 
However, the decoder receives x, a possibly 
corrupted version of c, from which it extracts a 
hard-decoded sequence r, along with a reliability 
measure (based on the actual analog value) of each 
symbol. The latter is needed in order to rank the 
symbols in r according to their reliabilities, 

originating the sorting sequence s, which allows the 
use of soft decision. 

G consists of k linearly independent (LI) 
columns (usually, the identity matrix Ik) plus n - k 
columns (linearly dependent on the previous ones) 
responsible for adding the redundancy. In block 
form, G can be represented as G = [I | P], where I is 
a k×k identity matrix and P is a k×(n – k) parity 
matrix.  

An information set (IS) is defined as any set of k 
LI columns in G [6]. Because of the redundancy 
added by the encoder, it is not necessary to consider 
all n bits to decode a received sequence. The core 
principle of soft information-set decoding is to 
consider only the k most reliable LI symbols in x to 
reconstruct the original source message. Such 
algorithm can be roughly summarized as follows. 

a) Extract from the received codeword x the 
hard-decoded sequence r and the corresponding 
reliability sequence s. 

b) Based on s, select the k most reliable symbols 
in r and disregard the remaining n – k symbols. 

c) Re-encode the k most reliable symbols using a 
new Gn matrix, derived from the original G and 
equivalent to it, but with unit columns in the k most 
reliable positions. 

One way of obtaining Gn is by inverting the 
matrix formed by the k elected columns of the 
original G, then multiplying the result by G. A 
major problem in this procedure is that not all sets 
of k columns from G are LI, so inversion might not 
be possible. In such a case, another set of k symbols 
must be chosen and the process repeated until k LI 
columns (an IS) are found. Additionally, matrix 
inversion is a very costly operation, in both software 
and hardware.  

Another approach, partially based on [7], but 
with much simpler computations and for which a 
guaranteed small search space is demonstrated, was 
introduced in [8]. The generator matrix G is 
manipulated using Gauss-Jordan transformations, 
which can reduce any row or column to a unit 
vector. The algorithm is summarized in Fig. 1 and 
briefly described below, with a (7, 4) code used as 
an example, whose generator matrix is shown in 
Fig. 1(a). It is assumed that the ranked reliability 
values (s) are those marked at the top of each block 
in Fig. 1, which range from 1 (most reliable) to 7 
(least reliable). 
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Fig. 1. Construction of the Gr and Gr0 matrices. 
 
a) Extract from the received codeword the hard 

decoded sequence r and the corresponding 
reliability sequence s. The values of s are marked at 
the top of Fig. 1(a). 

b) Using Gauss-Jordan transformations, reduce 
the k most reliable columns (MRCs) of G to unit 
vectors. Even though there is no guarantee that the k 
MRCs are LI, the process does not need to be 
restarted when an LD columns is found; just replace 
the least reliable among the MRCs with the next 
MRC and proceed from there. This is illustrated in 
Figs. 1(b)-(f).Column 6 (the MRC) was reduced in 
Fig. 1(b), column 5 (the next MRC), in Fig. 1(c), 
then column 7, in Fig. 1(d). In Fig. 1(e), the 
algorithm failed to reduce column 3, indicating that 

the set is not LI. Column 3 was then replaced with 
column 2 (the next MRC), which was successfully 
reduced in Fig. 1(f), resulting in a fully reduced 
matrix Gr. 

c) Create the matrix Gr0, which is simply Gr with 
all unselected columns zeroed. This is shown in 
Fig. 1(g). 

d) Multiply r by Gr0 to obtain the initial source 
message, u0. 

e) Construct the set of all candidate messages by 
simply flipping one bit of u0 at a time. Thus the total 
number of candidate messages in this version of the 
algorithm is k + 1 (represented by ui, i = 0 to k). 

f) Finally, re-encode each candidate message (ui) 
using ci = ui×Gr to get the candidate codewords (ci), 
and measure the Euclidean distance between each of 
these codewords andr in order to decide the winner. 

 
 
3 Fundamental Hardware-
OrientedInformation-Set Decoder 
This section introduces the hardware architecture for 
the basic IS decoder. As will be explained later, the 
number of bits used to encode each analog symbol 
in x and the maximum number of candidate 
codewords have a great influence on the overall 
decoder performance. In the descriptions that 
follow, we adopt 3 bits for the former and a generic 
value m (≥ k + 1) for the latter. 

The hardware architecture of the fundamental IS 
decoder is depicted in Fig. 2. It consists of 5 main 
blocks: (1) input sorting and demodulation, (2) 
modified Gauss elimination of the G matrix, (3) 
candidate messages generation, (4) candidate 
codewords generation, and (5) best candidate 
selection. 

The overall decoding process proceeds as 
follows. Block 1 receives a digitized version x of the 
analog received word, from which it produces the 

Fig. 2. Decoder hardware diagram. 
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reliabilities vector s and the received word 
demodulated in a hard-decision fashion r. Block 
2 receives the original generator matrix G and the 
reliabilities vectors, and performs a modified Gauss 
elimination on G, producing two new matrices 
called Gr (reduced matrix) and Gr0 (reduced 
transformation matrix). Block 3 receives Gr0 (from 
block 2) and r (from block 1), and produces 
sequentially a set of m candidate messages uj. Block 
4 receives Gr (from block 2) and the candidate 
messages uj (from block 3), producing, for each, a 
corresponding candidate codeword cj. Block 5 
receives cj (from block 4) and x, and evaluates each 
of the m candidate codewords in order to produce 
the final output c’, which is the candidate with the 
smallest soft-distance with respect to x. 

The implementation details and computational 
performance of each block are described next. In the 
detailed diagrams, clock and reset signals are 
omitted for better clarity. 
 
3.1Block 1: Input Sorting and Demodulation 
Block 1 produces the hard-decoded version r from 
the received word x, a simple operation that consists 
in checking the most significant bit (i.e., the sign 
bit) of each digitized input symbol. As shown in 
Fig. 3, a simple ≥4 comparator suffices, since 3 bits 
(and therefore 8 possible levels) were employed to 
digitize the input analog values. In this case, values 
of x in the 0-to-3 range are decoded as zeros, while 
those in the 4-to-7 range are decoded as ones.  

Vector s is a list of integers from 1 to n, 
indicating the position of each bit fromxin order of 
decreasing reliability. The first value in s indicates 
the position of the most reliable bit in x. Because the 
received analog values are normalized in the −1 to 
+1 range, the closer a bit value is to −1 or +1, the 
more reliable it is; conversely, the closer it is to 0, 
the least reliable it is. This vector is generated by a 
linear insertion sorter, based on the architecture 
described in [9]. Since the analog values are ordered 
as they are shifted into the sorter, block 1 outputs 
become available after n clock cycles. 

 

sorter S(i) = j | rwa(j)=β (i) 

≥4

β
 

x s

r

 
Fig. 3. Block 1: Input Sorting and Demodulation. 

 
Sorting algorithms usually operate iteratively on 

an array of elements, and therefore the 
computational complexity is a function of the 

problem size, n. For example, the bubblesort 
algorithm presents O(n2) complexity, while 
quicksort has O(n log n). If the software runs in a 
single-processor CPU, no matter how optimized, 
this timing characteristic cannot be helped. On a 
custom hardware implementation, other choices are 
available, such as in the insertion sorting algorithm. 
This algorithm has an average and worst-case 
complexity of O(n2) [10], meaning that the average 
number of computations to sort a randomly ordered 
list is proportional to the square of the number of 
elements n in the list.  

For a single-processor machine, this dictates that 
the time to sort a list grows quadratically with its 
size. However, although the number of 
computations must be the same in either hardware 
or software, the timing complexity can be greatly 
reduced. By using replication, a hardware 
implementation can perform many computations in 
parallel. For example, Fig. 4 shows a parallel 
implementation of a linear sorter withO(n) time 
complexity, employed in our implementation. 
Because sorting is the first operation performed on 
the received word, it has a significant impact in the 
throughput of the decoder. A constant goal in out 
hardware implementation was to keep the number of 
clock cycles to decode a word as linear as possible, 
with respect to the size of the received word. 

 
Fig. 4. Hardware implementation of a linear 

insertion sorter. 
 
 
3.2 Block 2: Modified Gaussian Elimination 
Block 2 receives the reliabilities vector s produced 
by block 1 and the code’s original generator matrix 
G, from which it produces the matrices Gr (reduced 
G matrix) and Gr0 (reduced transformation matrix) 
described in Section 2. As shown in Fig. 5, the 
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ordering of the reduced columns is dictated by s.The 
elimination proceeds until k LI columns are found.  

In the first iteration, a temporary data structure 
called the working matrix (WM) is loaded with G. 
In subsequent iterations, WM is transformed via 
Gauss-Jordan operations, until an identity matrix is 
found. Because it may take a variable number of 
cycles to obtain k LI columns, the outputs will be 
available somewhere between k and n – dmin + 1 
clock cycles, as demonstrated in Theorem 1.4.15 of 
[11]. Gr0 will be used to extract from the received 
word only those bits in the positions indicated by 
the IS. Gr will be used to re-encode the k-bit 
candidate messages, generating the series of n-bit 
candidate codewords. 

1 0

WM

swap rows

eliminate

=k

G

Groutput_ready

reset

iteration  counter

elimination counter

row & col. selects

=1

WGpe

Gr0

Fig. 5. Block 2: Modified Gaussian elimination. 
 
3.3 Block 3: Candidate Messages Generation 
Block 3 is responsible for generating a series of m 
candidate messages, one per clock cycle. In the 
subsequent stages, these candidates are evaluated to 
select the one that most closely resembles the 
received word. This is an iterative process, 
controlled by the iteration counter present in Fig. 6.  

In order to obtain the original candidate message 
u0, the bits from r corresponding to the selected 
information set must be extracted and rearranged. 
This is done by multiplying the hard-decoded 
sequence r by matrix Gr0

T, using a hardware 
structure called a vector-matrix multiplier (VMM), 
which was shown as a symbol in Fig. 2. In Fig. 6, 
this VMM is shown in more detail, at the circuit 
level. No that even though matrix operations using 
real numbers tend to be complex, this is not the case 
with boolean matrices; as can be seen in Fig. 6, this 
operation is performed with simple AND and XOR 
gates. 

The fundamental version of the decoder 
generates k candidate messages, by flipping one bit 
at a time from the original message u0. For example, 
for a code with 4 information bits (k=4), the 
corresponding flipping patterns would be 0001, 

0010, 0100, and 1000. In total, m = k + 1 messages 
are evaluated, because the original message with no 
bits flipped is also a valid candidate. In Sec. III, this 
number of candidates will be extended to improve 
the performance of the decoder. Additionally, more 
complex bit patterns will be used. 

The bit-flipping patterns are stored in a ROM, 
and are summed with the original candidate 
message u0 to produce the series of candidate 
messages. This operation (a modulo-2 addition) is 
very simple in hardware, and is equivalent to a 
bitwise XOR of the original message u0 with each 
bit-flipping pattern. 

r1

Gr0
T

11

rn
Gr0

T
n1

r2
u1

r Gr0
T

MOD-m
counter

m×k
ROM

A D

Gr0
T

21

bit-flipping patternsiteration counter

vector-matrix multiplier, bit 1 vector-matrix multiplier, bit k

modulo-
2 adder

u0

k

k

n n×k

r1

Gr0
T

11

rn
Gr0

T
n1

r2
u1

Gr0
T

21

k

 
Fig. 6. Block 3: Candidate messages generation. 

 
3.4 Block 4: Candidate Codewords 
Generation 
Block 4 is responsible for producing a candidate 
codeword cj from each candidate message uj 
generated in block 3. This operation consists in re-
encoding each message using the rearranged 
generator matrix Gr. As in block 3, a vector-matrix 
multiplier is used (Fig. 7). This operation is entirely 
sequential, and the outputs are available at the next 
clock cycle. 

u(j)1
Gr11

u(j)k
Grk1

u(j)2
C(j)1

Gr1n

Grkn

Gr2n

C(j)n

u(j) Gr

Gr21

vector-matrix multiplier, bit 1 vector-matrix multiplier, bit n

cj

n

u(j)1

u(j)k

u(j)2

k n×k

 
Fig. 7. Block 4: Candidate codewords generation. 
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3.5 Block 5: Candidates Evaluation and 
Selection 
Block 5 is responsible for ultimately selecting the 
best candidate (i.e., the one that most closely 
resembles the analog received word) and producing 
the output of the decoder. In maximum-likelihood 
decoding (MLD), the decoding algorithm consists in 
selecting the codeword with the shortest Euclidean 
distance to the received word. In the presented 
architecture, a simpler soft-distance between each 
candidate ccj and the received analog word x is 
calculated as described in [12]: for each received 
symbol represented as a 3-bit quantized level x, the 
bit distance is 7-x to a code bit value ‘1’, and x to a 
code bit value ‘0’. The total distance between these 
two words is the sum of all individual bit distances. 
After calculating this metric for each candidate, the 
codeword with the smallest distance to the received 
analog word is selected as the output of the decoder. 
Each candidate word is evaluated in one clock 
cycle; therefore, if a number of candidates greater 
than k+1 is used, it can have a significant impact on 
the decoder performance. 

1
0

cj(1)

7-x(1)

x(1)

cj(0)

x(0)

7-x(0)

⋮ 
1
0

cj(n)

7-x(n)

x(n)

d‹cj,x›cj n

cj c’

x
n

Σ 
1
0

D
 en

Q 

D
 en

Q 

A
B

A<Bn
n

n

n n

 
Fig. 8. Block 5: Candidates evaluation  

and selection. 
 
4 Quantization Effects and Number of 
Bits 
A crucial decision in any digital hardware 
implementation is the minimum number of bits 
needed to represent the involved signals, which 
should be kept as low as possible in order to save 
resources (area, power consumption, etc.). The 
purpose of this section is to investigate the effect of 
quantization on the IS decoder performance, and 
from it to derive the minimum number of bits that 
should be adopted. 

In order to conduct such analysis, it is necessary 
that the signal characteristics be either well known 
or, at least, consistently modeled. In soft decision 
decoding of block codes, the received signal 

generally undergoes a normalization process, so the 
signal’s mean and standard deviation get divided by 
a constant. Even though such normalization does not 
affect the standard normal variable and the bit error 
rate, it does change the signal’s sensitivity to the 
number of discretization intervals.  

We start the analysis by examining the influence 
of the number of quantization intervals on the SNR, 
from which we obtain analytical expressions that 
can be used to fine tune the number of levels used in 
the decoder. Next, the results are validated both by 
determining the convolution of the signal 
distribution with the quantization noise distribution, 
and by showing the results from Matlab simulations. 
Finally, the minimum number of bits is obtained and 
conclusions are presented. 

 
4.1 Influence of received signal 
normalization on its standard deviation 
For a code of length n and message length k, with 
BPSK modulated components of amplitude ±A, 
under the influence of an AWGN channel with a 
signal-to-noise ratio Eb/N0, the standard deviation is 
[13] 

 (1) 

where the subscript r denotes real standard 
deviation (as opposed to that after signal 
normalization).  

In order to preserve the relative symbol 
reliabilities, the receiver/demodulator executes 
signal normalization for every block of n symbols 
by dividing all n values by the greatest signal 
modulus of all n symbols. This way, symbol 
amplitudes become normalized between ±1. 
Truncation of outliers, although a common practice, 
will be disregarded. Such normalization produces a 
signal compression given by  

 , 
(2) 

where the subscript n means normalized and µext is 
the average of the extreme (greatest) values in each 
block.   

The value of µext can be derived with the help of 
the theory of order statistics. Using the theory in 
[14], for example, one can obtain the distribution for 
the extreme values and, from it, the mean value µext. 
Fig. 9(a) shows the resulting theoretical distribution 
of extreme values for the C(48,24,12) code, for 
several signal-to-noise ratios.  To validate these 
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results, simulations were performed with 
105randomly generated codewords, and their 
extreme values were plotted as histograms in Fig. 
9(b). As can be seen, the theoretical and the 
experimental values are virtually the same. 

 
Fig. 9.  (a) Theoretical extreme values 

distribution for C(48,24,12) and  
(b) corresponding simulation histograms. 

 
Additional simulation results are presented in 

Table 1, for three codes. As can be seen in the last 
two columns, the theoretical and the experimental 
values are again very close. 
 
4.2 Influence of number of quantization 
intervals 
The discretization of a signal with a finite number of 
quantization levels, where each level has an 
amplitude q, introduces a random error of amplitude 
± q/2.  In general, simulation models equate 
quantization in levels of amplitude q to a uniformly 
distributed noise between +q/2 and – q/2, with zero 
mean and variance q²/12.  However, Widrow [15] 
showed that such a model, called 
pseudoquantizationnoise (PQN) model, is only an 
approximation, valid under certain conditions. The 
original goal of Widrow's analysis was to 
investigate the conditions under which the 
probability distribution and other statistics of the 
original signal could be recovered without errors 
from the quantized signal. However, his results can 
be applied here to validate the applicability of the 
PQN model to our investigation. 

According to Widrow, the PQN model performs 
well with quantization intervals up to one standard 
deviation, with precision better than one part in 107 
for standard deviation estimates of Gaussian 
distributed signals. Dorsch [7] suggested using a 
quantization interval value of 0.35σ  for computer 
simulations of quantized signals.  Our study will 
assess the consequences of discretizing a normalized 
signal with from 3 to 8 quantization bits (thus with 
23 = 8 to 28 = 256 quantization intervals).  For a 
normalized signal in the ±1 interval, this means 
amplitude intervals q from 2/23 = 0.25 to 2/28 = 
0.0078127. When compared to the σn values in the 
last columns of Table 1, q<σn in all cases, 
warranting the application of the PQN model 
without further restrictions.  

Table 1. Standard deviation of normalized 
values. 

 
 

By applying the PQN model, the quantized 
signal can be represented as a random variable 
resulting from the sum of two independent random 
variables (Fig. 10); one is the Gaussian distributed 
normalized signal with mean µn = 1/µext and 
standard deviation σn

2 = (σrµext) 2, and the other is a 
uniformly distributed variable due to noise in the 
±q/2 interval with mean µu = 0 and variance σu

2 = 
q²/12.  
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Fig. 10: PQN model for evaluation of 

quantization noise effects. 
 
Since the random variables involved in the sum 

are statistically independent, the resulting mean will 
be the sum of their means, and the resulting variance 
the sum of their variances. By denoting the 
quantization interval as a fraction α of the resulting 
standard deviation, we can write: 

α = q/σn→q = α.σn (3) 

Therefore: 

, (4) 

 
where the subscript eq stands for equivalent, as 
indicated in Fig. 10. 

Eq. 4 shows that the normalized signal standard 
deviation grows by a factor (1 + α²/12)1/2.  
Furthermore, because the model is linear, the 
standard deviation σr eq of the equivalent Gaussian 
distributed noise can be estimated by multiplying 
both members of equation (4) by µext: 

 
(5) 

 
Using equation (5), we can determine the SNR 

degradation due to noise.  By rewriting equation (1): 

 (5) 

Then setting σr = σr eq and using equation (5): 

 (6) 

the following results: 

 (7) 

Table 2 and Fig. 11 summarize the resulting 
degradation for three codes. An important 
conclusion is that there is very little to gain by using 
more than 3 quantization bits, and essentially no 
gain at all by using 5 bits or more. For example, for 
the C(48,24,12) code operating in a channel with 
Eb/N0 = 5 dB, Table 2 shows that the effect of using 
only 3 bits (instead of 5 or more) is the same as 
having a channel with Eb/N0 reduced to 4.67 dB; or 
reduced to 0.77 dB if operating in a channel with 
Eb/N0= 1 dB.  Whether such (small) degradation is 
acceptable or not depends on the application, for 
which the quantification presented in this analysis 
provides the needed information. For the reasons 
presented above, 3 bits were employed in the 
hardware implementations described in this paper.  

 
Fig. 11: SNR degradation due to quantization. 

 

Σ

Gaussian
distribution
µ = µn = 1/µext
σ = σn= σr / µext

Uniform distribution

 0         /  12
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distribution

µeq  = µn  + µu
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eq = σ2
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Table 2. SNR degradation due to quantization. 

 
 
4.3 Validation of the PQN model 
The previous section showed how to determine the 
equivalent standard deviation and corresponding 
degradation in SNR of the quantized signal.  
Because the reference model to evaluate decoding 
performance is that of a channel under additive 
white Gaussian noise, a natural question that arises 
is how far the quantized signal departs from this 
model. 

The employed PQN model consists of a sum of 
random variables with different probability density 
functions (PDFs).  Such sum is also a random 
variable, and its PDF is the convolution of the PDFs 
of the summed variables. We want to examine how 
much the result of this convolution might differ 
from a true Gaussian distribution. 

Results from such convolution are depicted in 
Fig. 12.  In Fig. 12(a), a ratio α = q/σn = 4 was 
employed, only to further highlight the difference 
between the convolution results a Gaussian variable 
with the same standard deviation. Nevertheless, 
even in this extreme scenario, the difference 
between the two curves is less than 2.5%.  In the 
scenarios considered in our study, α< 1, and the 
resulting difference is never greater than 0.4%.  Fig. 
12(b) shows the case for α = 1; note that the normal 
curve and the convolution result are 
indistinguishable. This figure was vertically 
truncated in order to better highlight the compared 
curves. 

 
Fig. 12: Convolution of signal and quantization 

noise for (a) α = 4 (β)α = 1. 
 
 

4.4 Validation of quantization effects 
The previous sections showedthat the discretization 
of the normalized signal is equivalent to a 
degradation of the SNR, and provided the means to 
quantitatively determine this degradation. 

However, the ability to estimate an equivalent 
SNR is no guarantee that a decoding algorithm will 
perform equivalently with a quantized signal as it 
would perform with a non-quantized signal in a 
correspondingly reduced signal-to-noise ratio 
scenario. The reasoning behind this is that the real 
PDF is not Gaussian in nature but, according to 
Widrow [15], it consists of a series of Dirac 
impulses of area equal to the corresponding area 
under the equivalent normal curve, as shown in Fig. 
13. 

 
Fig. 13: Signal distributions before (x) and after 

(xq) quantization. 
 
In order to understand the distributions shown in 

Fig. 13, we must consider that the quantization 
process rounds off all values in one interval to its 
central value. In other words, the whole interval area 
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under the normal curve becomes concentrated into a 
single point at the center of the interval.  Therefore, 
the impulse areas correspond to the sample values, 
taken at the center of the interval, of the convolution 
of the non-quantized signal with a rectangular pulse 
corresponding to the uniformly distributed PQN 
noise. 

Given the real nature of the PDF of the quantized 
signal, it is reasonable to inquire whether the 
decoder performance is the same in both situations: 
with the quantized signal, or with a non-quantized 
signal and the correspondingly reduced signal-to-
noise ratio, as derived above.  In order to clear this 
last point, simulations were performed with 105 
randomly generated codewords, comparing the 
decoder performance using both the quantized and 
non-quantized signals against the non-quantized 
version, always with the correspondingly reduced 
signal-to-noise ratio. As an example, Fig. 14 
illustrates the assignment of discrete values to the 
quantization intervals used in the case of 8 
quantization intervals. Fig. 15 shows simulation 
results for this case (8 intervals), where it can be 
seen that the curves for the quantized signal and for 
the non-quantized signal with SNR reduction 
practically coincide, confirming the theoretical 
predictions made above. 

An important conclusion of this section is that 
the curves, tables, methods, and equations presented 
are a valid tool to enable a hardware designer to 
balance resource usage against the performance 
degradation introduced through discretization of the 
analog received signals.  

 
Fig. 14: Discrete values assignment for 8 

quantization intervals 

 
Fig. 15: Validation of the quantization effects (8 

intervals) for several codes. 
 
 

5 Number of Codewords  
Soft maximum-likelihood decoding (MLD) 
algorithms consist in computing the Euclidean 
distance between a received sequence and all 
possible 2k codewords, then choosing the candidate 
with the smallest distance. Longer codes offer better 
error-correction performance; however, the number 
of comparisons grows exponentially with k.  
Nevertheless, we demonstrate in this section that it 
is possible to select a relatively small number of 
codewords with a very high probability of 
containing the best candidate. This greatly reduces 
the number of comparisons and speeds up the 
decoding process.   

The strategy to obtain the most likely candidates 
for a given block code C(n, k, d) consists in the 
following steps: 

+1

-1

 0

+0,875
+0,625
+0,375
+0,125
- 0,125
- 0,375
- 0,625
- 0,875Normalized signal range ± 1 Discretized signal ranges

(8 levels)
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i) Randomly generate a large number of 
codewords c∈C, subjected to additive white 
Gaussian noise. 

ii) Estimate the probability of occurrence for 
every possible error pattern, based on the measured 
number of occurrences of each error pattern. 

iii) Sort the error patterns according with the 
measured probability. 

From this, a fixed set of error patterns (called bit-
flipping patterns, in Section 3) for a given code is 
obtained, which are sorted by decreasing probability 
of the corresponding error occurrence.  The number 
of bit-flipping patterns (m) can be chosen according 
to the desired level of decoding performance.  
Simulations have shown that choosing m from 3% 
to 5% of 2k produces results which are practically 
indistinguishable from true MLD results. 

Once the bit-flipping patterns for the code are 
found, a set of highly probable candidates for each 
received sequence x can be determined as follows. 

i) The n symbols of the received sequence x are 
sorted in order of decreasing reliability.   

ii) The code generator matrix G is then 
manipulated via Gauss-Jordan transformations, in 
order to determine the positions of the k most 
reliable and linearly independent symbols of x.  
These will be the positions which correspond to the 
first k unitary columns of the transformed matrix Gr, 
as explained in Section 2. 

iii) The k most reliable and linearly independent 
symbols from x are extracted, forming the most 
likely message u0 (hereafter called the reference 
candidate message), from which c could have been 
originated by multiplying u0 by Gr. 

iv) The bit-flipping patterns are then applied to 
u0, generating a set of alternative messages {u0, u1, 
u2,…, um}.  This set of messages ui is then 
multiplied by Gr, producing the set of candidate 
codewords {c0, c1, c2,…, cm}. 

In general, the most likely candidates are those 
resulting from message words with just one bit 
flipped, followed by those with two bits flipped, and 
so on. However, this is not the case for all patterns. 
Moreover, it is necessary to determine which, 
among all candidates with the same number of bits 
flipped, is the most likely, so exhaustive simulations 
are indeed needed to rank the bit-flipping patterns. 

The most relevant conclusion is that after 
inspecting just the candidates with one or two bits 
flipped the decoder already reaches a performance 
very near (>99%) that of MLD; this means that 
more than 99% of the bit errors that would be 
corrected with MLD decoding are corrected by the 
proposed approach. In other words, instead of 
inspecting all 2k words (as in MLD), only very few 

are indeed needed to reach practically the same 
performance.An example is shown in Table 3, for 
the C(24,12,8) code. 

Table 3.Decoder performance relative to MLD as 
a function of the number of candidate 

codewords, for the C(24,12,8) code. 

 
 
Note that after inspecting only m=25 (properly 

chosen) candidates, nearly 98% of the performance 
that would be attained with all 4,096 candidates is 
achieved. Observe also that with m=100 candidates 
(that is, just 2.44% of the possible cases), the 
performance is already near 99.8%. This selection 
procedure, which allows m to be small, is crucial to 
make the hardware implementation viable. 

Additional results are presented in Fig. 16, 
showing the performance degradation for several 
codes with respect to MLD as a function of the 
number of candidates, under several noise 
conditions. 

 
Fig. 16. Performance degradation (in dB) with 
respect to MLD, as a function of the number of 

candidate codewords. 
 
This graphgives the number of candidates that 

must be evaluated to achieve the desired decoding 
performance. For example, to operate with at most 
0.1 dB of degradation with respect to MLD, we take 
the corresponding horizontal line in Fig. 16, from 
which the following results, for the worst case 
(Eb/N0 = 5 dB): 

- For C(15,7,5): 5 candidates, out of 128 words. 
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-For C(24,12,8): 12 candidates, out of 4,096 
words. 

-For C(48,24,12): 100 candidates, out of 
16.8×106 words. 

-For C(66,33,12): 400 candidates, out of 8.6×109 
words. 
 
6 Acceptance Criteria  
The original soft maximum-likelihood decoding 
(MLD) algorithm computes the Euclidean distance 
between a received sequence and all codewords in a 
given code, and then chooses the candidate with the 
smallest distance to the received sequence. On the 
other hand, soft information-set decoding allows the 
number of comparisons to be greatly reduced, while 
being still very likely to contain the winning 
codeword. 

The number of comparisons can be reduced even 
further with the inclusion of acceptance criteria. An 
acceptance criterion (also called a stop criterion, 
early termination rule, or stop rule) is a test which 
can immediately identify a given codeword as the 
best possible candidate, which is then declared the 
winner, abbreviating the decoding procedure. 

As a trivial example for a stop rule, consider a 
check of the Euclidean distance between the 
received sequence and a given codeword. If this 
distance is less than the minimum Euclidean 
distance of the code, the candidate can be instantly 
declared as the correct output of the decoder. 
However, although this criterion is easily applicable, 
it has a low efficiency because it can only identify a 
small fraction of the actual maximum-likelihood 
candidates, having therefore little impact on the 
average number of computations. 

There are, however, other acceptance criteria, 
with different degrees of efficiency and 
computational demands. This section reviews the 
main stop criteria and describes a new one (HO-
BGW), which is hardware-oriented and is used in 
the final implementation of our IS decoder.  

Before we start, it is important to mention that 
the efficiency of a stop rule can be immensely 
enhanced by ordering the candidates according to 
some probability measure (so the most likely are 
tested earlier), which indeed occurs in the proposed 
method. 

 
6.1 Generalized Minimum Distance (GMD) 
Criterion  
The GMD acceptance criterion [5] states that for a 
given code of length n and minimum Hamming 
distance dHmin, given a received sequence x and a 

candidate codeword c modulated in BPSK, if the 
condition 

 (9) 
 
is satisfied, where 〈x,c〉 denotes the inner product 
between x and c, then c is unique, 〈x,c〉 = 〈x,c〉max, 
and therefore the Euclidean distance between x and 
c is minimum. 

Although the GMD criterion has a simple 
implementation, it is not used in practice because of 
its low efficiency. As will be shown later, 
simulations of GMD with a C(15,7,5) code indicate 
an average reduction in the number computations of 
only 1.77%, for an Eb/N0 ratio of 5 dB. 

 
6.2 Hypercone Rule 
The hypercone rule [16][17]  is based on the 
principle that if the angle between the received 
codeword and a candidate is less than half the 
smallest angle between any two codewords, then the 
received word is within the Voronoi region of the 
candidate. This criterion is valid for all cases where 
all codewords have the same module.  It can be 
expressed mathematically as follows: 

 (10) 

or 

, (11) 
 
where the radical on the right side of equation (11) 
is always a constant, dependent only on the code 
parameters dHmin and n. 

Later, Godoy et al [17] demonstrated that a 
received vector v belongs to the Voronoi region of a 
candidate c if and only if the hybrid sum of vandc 
belongs to the Voronoi region of the null codeword 
c0, that is: 

, (12) 
 
where V(c) stands for the Voronoi region of . On 
the other hand, it is also possible to set c to the null 
codeword c0 in equation (11). If all components are 
BPSK encoded, equation (11) is reduced to: 

 (13) 
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Denoting the hybrid sum of v and c by vs, and its 
components by vsi, the hypercone acceptance 
criterion can be rewritten as: 

 (14) 

 
This last form is more efficient when the hybrid 

sum has already been computed by another 
algorithm, or when computing the hybrid sum is 
simpler than computing the inner product. 

 
6.3 Taipale-Pursley Criterion 
The acceptance criterion proposed by Taipale and 
Pursley [3] can be summarized as follows. Consider 
a code C with minimum Hamming distance dHmin, a 
received sequence x (whose symbols xjdelivered by 
the demodulator have a reliability measure βj, 0< βj< 
1), and a candidate codeword c. The latter is the best 
candidate if the following condition is satisfied: 

, (15) 
 
where S is the set of indices j such that the 
components cj (of c) and xj (of x) have opposite 
signs, i.e., S = {j | sgn(cj) ≠ sgn(xj), 0 ≤ j ≤ n} (this 
set has cardinality |S|). Tis the set of δ = dHmin - |S| 
indexes in the complementary set of S that have the 
smallest values for βj. 
 
6.4 Barros-Godoy-Wille (BGW) Criterion 
It was demonstrated in [16] that the BGW criterion 
has a better performance than GMD or Hypercone. 
It was also demonstrated independently in [18] that 
its performance is equivalent to that of Taipale-
Pursley; however, the BGW criterion employs a 
different approach, much simpler to implement in 
hardware. To better understand its derivation, we 
will initially review the definitions of the Voronoi 
region and hybrid sum [18]. 

Definition: The Voronoi region V(ci) of a 
sequence ci∈C is defined as the set of vectors 

 that are close to ci, obeying the following 
relationship: 

 (16) 
 

Definition: The hybrid sum operation [+] 
between a sequence  and a sequence  
is defined by the equation below, where x.ci is the 
term-by-term product of x and ci: 

 (17) 

Property 1:  The operation [+] simply changes 
the sign of the components of x if the correspondent 
components of ci are equal to one.  The reliabilities 
of the symbols in the sequence  are the 
same as in the sequence x. 

Theorem: Consider a code C with minimum 
Hamming distance dHmin, a codeword ci (with 
components cij), and a sequence x, (with 
components xj). The codeword ci is considered the 
best candidate codeword for x if the following 
condition is satisfied: 

, (18) 
 
where Q is the set of dHmin indexes j such that the 
components in the sequence  have the 
highest numerical values (most positive or least 
negative). 

Proof: Suppose that ; then, by 
Definition 1: 

 (19) 
 
Writing the Euclidean distance in terms of inner 

product: 

 (20) 
 
Inequality (20) can be rewritten as: 

 (21) 

 
Assuming that , 

with  as its complementary set, we have: 
 

 

 

(22) 

Observing that  and 
, the second sum in both sides cancel 

out and we obtain: 

 (23) 

 
Using Definition 2: 

 (24) 
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It is sufficient to consider in the equation above 
only the closest codewords, such that |W|= dHmin. 

Finally, we consider the following property: if 
the sum of the dHmin components of highest 
numerical values in a given sequence is less or equal 
to zero, than the sum considering any other dHmin 
components is also less or equal to zero.  Therefore, 
the equation above is satisfied if: 

, (25) 

which concludes the proof. 
Corolary 1:  The sequence x belongs to the 

Voronoi region of the zero codeword c0 if: 

 (26) 

 
This criterion was called Sum Rule, and its 

performance was demonstrated to be superior (less 
stringent) than that obtained with the GMD or the 
hypercone criterion [16][17][18]. 

 
 

6.5 Hardware-Oriented BGW (HO-BGW)  
The fundamental motivation for the HO-
BGW(Hardware-Oriented BGW) criterion was to 
produce a feasible hardware implementation, while 
keeping a performance level close to the original 
BGW. 

Acceptance tests are one of the final steps in the 
decoding process. Because they must be executed 
once for each candidate, they should not take longer 
than generating such a codeword, otherwise the test 
would represent a bottleneck for the entire decoding 
process.  

Despite being a major constraint, this problem 
exists in all of the previous criteria. Moreover, such 
criteria employ complex operations, such as 
summations, sorting, and other iterative procedures, 
and require several clock cycles to be evaluated. 
The HO-BGWcriterion overcomes this limitation by 
making use of the already available symbol 
reliability ordering. Recall that the BGW requires 
the symbols to be ordered according to their signed 
values, in order to isolate the dHmin most positive 
ones.  While symbol reliability ordering is based on 
absolute values instead of signed values, this 
ordering can still be used if sign information for 
each symbol is available.  Fortunately, as will be 
shown, in soft IS decoding the candidates generation 
is such that sign information will always be 
available for the k most reliable symbols. To make 
this statement clear, an example is provided below. 

Consider a C(15,7,5) code and a received 
sequence x. Applying the information set decoding 
algorithm, a set of q candidates {c0, c1, … cq-1} can 
be obtained, whose hybrid sum with x generates the 
set {x’0, x’1, …  x’q-1}. Fig. 17(a) illustrates the 
reliabilities-based ordering of x’0. 

 
Fig. 17. Reliability-based ordering of (a) x’0 and 

(b) x’1 components. 

 
The dashed line indicates the absolute value 

ordering, obtainedwithy standard IS decoding. The k 
leftmost (and most reliable) symbols were obtained 
by abrupt decision. Since these symbols were used 
to reconstruct the codeword c0, those positions have 
the same polarity in x and c0. It follows, by 
definition of the hybrid sum, that the first k positions 
of x’0 are all negative. For these reasons, the most 
positive values in x’0 (which would be used by the 
original BGW algorithm) will be in the dHmin 
rightmost positions. These values must be summed 
and their sum must result negative. We will refer to 
this requirement as condition C1. The values to be 
summed in order to verify condition C1 can be 
selected by a mask m1. In this example, the value of 
m1 for the first candidate is: 

 (27) 
 
However, the stop condition will only be valid if 

the central k - dHmin positions in x’0 (labeled with 
question marks in Fig. 17(a)) are negative. These 
values can be selected by a mask m2, which 
indicates the positions that should not be negative 
for the rule to be valid:  

 (28) 
 
We will refer to this second condition as C2. In 

the case of Fig. 17(a), the sum of the five rightmost 
values of x’0 is negative (condition C1) and the 
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central k – dHmin positions are all negative (condition 
C2), so c0will be declared as the best possible 
candidate. 

At this point, the HO-BGW algorithm would 
stop, but, in order to better illustrate the algorithm 
operation, we proceed to analyze the next iteration. 
Fig. 17(b) illustrates the reordering of the next 
hybrid sum in the set, x’1. This hybrid sum was 
obtained from c1, in which one of the symbols (the 
least reliable among the most reliable k symbols) 
was flipped, according to the bit-flipping pattern 
0000001. In this case, the flipped symbol is not only 
positive, but also, due to the reliability ordering, 
more positive than any of the rightmost dHmin 
symbols, and so it should be exchanged with one of 
the dHmin rightmost symbols.  

This is the point where the HO-BGW deviates 
from the original BGW. The flipped position should 
replace the most negative of the least reliable dHmin 
symbols; however, here only absolute reliability 
information (and not polarity) is available, so we 
settle for substituting the most reliable among the 
least reliable dHmin symbols, noting that this will be 
valid only if the replaced symbol was indeed 
negative. This is the reason why we need to check 
condition C2 in addition to C1, and also the reason 
why the HO-BGW is slightly less efficient than the 
original BGW criterion: it will not be able to operate 
on the (small number of) candidates that have 
positive valuesin the set of symbols selected by 
mask m2 (indicated by question marks in Figs. 
17(a)-(b)). 

For the hybrid sum x’1, the values of m1 and m2 
are:  

m1,1 = {0000001 000 01111} (29) 
m2,1 = {000000011110000} (30) 

 
The generation of masks m1 and m2 is simple: the 

first k bits of m1 are the same as the bit-flipping 
patterns used to generate the candidate codewords.  
The last bit positions will be filled with as many 
ones as necessary for the mask m1 to have exactly 
dHmin bits one.  As for mask m2, its first k positions 
will always be zero and its last n – k positions will 
be the complement of the n – k bit positions of m1. 

 
6.6 Comparison between BGW and  
HO-BGW 
A direct comparison between these two acceptance 
criteria is presented below.  
 
BGW 
1) Sort x’n in descending order of signed values.  
2) Sum the first (most positive) dHmin values. 

3) If this sum is negative, c is the best candidate. 

HO-BGW 
1) Sort x’n in descending reliabilities order (absolute 
values). 
2) Sum the values in the positions indicated by mask 
m1; condition C1 is true if this sum is negative. 
3) Check the values in the positions indicated by m2; 
condition C2 is true if none is positive. 
4) If C1 and C2 are true, c is the best candidate. 

An important conclusion from this comparison is 
that they are simple enough for the HO-BGW 
criterion to be incorporated in the hardware, without 
substantial additional resources. Moreover (and very 
importantly), the HO-BGW test can be performed in 
a single clock cycle. 

 
6.7 Comparison of stop criteria efficiency 
A numeric performance comparison between BGW 
and HO-BGW is presented in Table 4. As can be 
seen, HO-BGW achieves its best result with the 
C(24,12,8) code, with a reduction of 96.8% in the 
number of candidates that must be evaluated. The 
performance difference between BGW and HO-
BGW varies with the code length and the signal-to-
noise-ratio, but it is always under ~12% for the 
testedcodes. On average, the HO-BGW criterion 
provided a reduction of 69.6% on the number of 
candidates that must be evaluated, against 77.9% of 
the original BGW criterion.  

Table 4. Reduction in the number of iterations 
(in %). 

 
 

7 Enhanced Hardware-Oriented 
Information-Set Decoder 
This section introduces the final hardware 
implementation for ourIS decoder with the HO-
BGW acceptance criterion included.  The circuit, 
based on that introduced in Fig. 2, is shown in Fig. 
18. Afundamental feature of this implementation is 
that the acceptance test of each candidate is 
performed in a single clock cycle. Because the 
generation of a candidate also requires one clock 
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cycle, no bottleneck is imposed by the introduction 
of the stop criterion. 

As can be seen in Fig. 18, new hardware 
structures were added to implement the HO-BGW 
acceptance criterion (indicated by the lines and 
blocks in bold). Note that the computations related 
to the HO-BGW criterion were distributed through 
all five stages. The modifications performed on each 
stage of the decoder are summarized below. 

Block 1: The permutation matrix Ps is generated, 
with its elements defined by psij = {0 | i ≠ sij, 1 | i = 
sij }. When Ps is multiplied by the received sequence 
x, the components of xare reordered such that the 
first element is the most reliable one. 

Blocks 2 and 3: During Gaussian elimination, it 
is possible that some symbols fall into LD positions 
and cannot be used in the decoding procedure. For 
this reason, matrix Ps is rearranged into matrix PsI, 
which will have only LI columns on its left side. In 
Block 2, two auxiliary matrices are created: PsLI, 
with only LI columns, and PsLD, with only LD 
columns. In Block 3, these matrices are 
concatenated into PsI, which has LI columns on the 
left, LD columns in the center, and the remaining 
columns copied directly from Ps. 

Block 4: Besides generating the candidate 
codewords ci, Block 4 calculates the hybrid sum x’n 
= x [+] cn and two bitmasks, used to compute 
conditions C1 and C2. These bitmasks are rearranged 
versions of m1 and m2, sorted by reliability, and 
given by m1r(i) = m1(i)·PsI

T and m2r(i) = m2(i)·PsI
T. 

Block 5: Finally, conditions C1 and C2 are 
calculated, as described in Section 6.5. These 
calculations are simple and can be performed at the 
same time as the next candidate is being generated 
in Block 4. 
 
8 Results 
 
8.1 Fundamental Hardware-Oriented IS 

Decoder 
This is the initial version of the decoder shown in 
Fig. 2, which does not include yet the acceptance 
criterion. The VHDL description was synthesized to 
a high-end Altera Stratix III FPGA 
(EP3SL150F780C2) for several code sizes, as 
shown in Table 5. A coverage performance of 
99.0% relative to MLD was specified for all decoder 
implementations. The hardware correctness was 
confirmed by an exhaustive testbench simulation of 
the C(7,4,3) code, which yielded correct outputs for 
all 221 possible input values (7 input symbols 
encoded with 3bits each).  

Table 5.  Synthesis Results for the Fundamental 
IS Decoder. 

Code Registers ALUTs fMAX 
(MHz) 

Latency 
(cycles) 

ttdMAX 
(cycles) 

Throughput 
(Mbps) 

C(7,4,3) 290 454 155.3 19 5 124,24 
C(15,7,5) 763 1,359 127.7 40 12 74,49 

C(24,12,8) 2,155 4,019 101.9 84 41 29,82 
C(48,24,12) 31,300 61,980 74.4 667 580 3,08 

 

Regarding silicon area usage, it was found that 
logic resources utilization (look-up tables and 
registers) increases almost linearly with the n×k 
product; however, since the list size m also increases 
for larger codes (in order to attain the same 
performance relative to the MLD), the observed 
growth is in fact more pronounced. It should be 
noted that even the C(48,24,12) code fits in a mid-
range device of the Stratix III family, indicating that 
the hardware implementation is indeed area-
efficient. 

 
8.2 EnhancedHardware-Oriented IS 
Decoder 
This implementation concerns the complete decoder 
(Fig. 18), with the HO-BGW acceptance test 
included. It was also implemented in VHDL 
language, then synthesized to a high-end FPGA of 
the Altera Stratix IV family (EP4SGX70DF29C2X) 

Fig. 18. Hardware implementation of the IS decoder with the HO-BGW acceptance criterion 
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for several code sizes, as shown in Table 6. The 
correctness of the hardware implementation was 
again confirmed by an exhaustive testbench 
simulation of the C(7,4,3) code, which yielded 
correct outputs for all 221 possible input values 7 
input symbols encoded with 3bits each).  

Table 6. Synthesis Results for the Enhanced IS 
Decoder. 

 C(7,4,3) C(15,7,5) C(24,12,8) C(48,24,12) Avg. Increase (*) 

LUTs 894 1,688 3,095 9,197 92.0 % 
Registers 860 1,729 3,011 7,556 180.0 % 
fMAX (MHz) 145.3 127.6 107.9 92.7 6.0 % 

(*) Compared to the fundamental decoder implementation of Fig. 2. 
 

As can be seen, the HO-BGW requires 92% 
more lookup tables (LUTs) and 180% more 
registers (flip-flops), on average. Roughly speaking, 
the inclusion of the HO-BGW stop test doubles the 
decoder’s hardware size. On the other hand, it 
provides a reduction of up to 96.8% in the number 
of codewords that must be examined. Since the 
maximum operating frequency stays essentially the 
same, this represents a total throughput of up to 30 
times the original value. 

The resulting circuit is also a highly area-
efficient implementation, with the C(48,24,12) code 
occupying only 20% of the smallest FPGA in the 
Stratix IV family. 

 
9 Conclusions 
We have presented three improvements that made 
viable the implementation of information-set 
decoders purely in hardware. First, we havestudied 
the effects of quantization in the decoding 
performance, allowing us to choose a number of bits 
that is small, and still provides a negligible 
performance loss. Second, we have introduced a 
procedure to select a small number of candidate 
codewords, with a high likelihood of containing the 
correct MLD output. Third, we have presented a 
new hardware-oriented acceptance criterion, which 
is highly efficient and feasible for a hardware 
implementation. 

Those three improvements were combined in the 
implementation of an enhanced information-set 
decoder purely in hardware. The proposed 
architecture can implement any linear block decoder 
and is highly area-efficient, with the C(48,24,12) 
code occupying only 20% of the smallest FPGA in 
the Stratix IV family. The inclusion of the HO-
BGW stop test roughly doubles the hardware 
size;on the other hand, it provides a reduction of up 
to 96.8% in the number of examined codewords. 

This represents a total throughput of up to 30 times 
the original value. 

Quantization of the received signal is a 
procedure common to all soft decoders. Our 
investigation demonstrated that there is very little to 
gain by using more than 3 quantization bits for each 
analog symbol, and essentially no gain at all by 
using 5 bits or more. The method and results 
supporting this conclusion are useful for any 
designer when choosing the number of quantization 
bits for a decoder. 

We have also presented a strategy forselecting a 
number of candidate codewords that allows 
achieving any desired performance level relative to 
MLD. We have shown that choosing sets as small as 
3% to 5% of all 2k possible values still produces 
results that are practically indistinguishable from 
true MLD.The most relevant conclusion is that after 
inspecting just the candidates with one or two bits 
flipped, the decoder already reaches a performance 
very close to that of MLD (>99%); this means that 
more than 99% of the bit errors that would be 
corrected with MLD decoding are corrected with the 
proposed approach. 

Acceptance tests are one of the final steps in the 
decoding process. Because they must be executed 
once for each candidate word, they should not take 
longer than generating such a codeword, otherwise 
the test would represent a bottleneck for the entire 
decoding process. We have demonstrated the 
efficiency of the new HO-BGW acceptance 
criterion, which provided a reduction of 96.8% in 
the number of candidates evaluated for the 
C(24,12,8) code. The performance difference varies 
with the code length and the signal-to-noise ratio, 
but it is always within 12% compared to the 
common Taipale-Pursley criterion. The HO-BGW 
criterion is the first acceptance criterion that allows 
a direct hardware implementation. 
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