
Efficient Hardware Implementation of Advanced Soft Information-Set
Decoders in FPGAs

R. P. JASINSKI1, W. GODOY JR.1, A. GORTAN1, S. B. L. FRANÇA1, V. A. PEDRONI1

Dept. of Electronics
UTFPR

Curitiba, Paraná
Brazil

pedroni@utfpr.edu.brwww.lme.citec.ct.utfpr.edu.br

Abstract: - This paper has four main goals: (i) to describe in detail a new architecture to implement
soft-decision, information-set-based decoders purely in hardware; (ii) to investigate the effects of
quantization of the received word on the decoder performance, calculating the minimum number of
bits that should be adopted; (iii) to present a strategy for optimizing the choice of candidate
codewords, allowing the selection of a small set with a very high probability of containing the best
candidate; and (iv) to present a new acceptance criterion that is both highly efficient and well-suited
for hardware implementations.The proposed architecture can be used to implement any linear block
decoder and is shown to be highly area-efficient, with the C(48,24,12) code occupying only 20% of
the smallest FPGA in the Stratix IV family. It is also shown that there is very little to gain by using
more than 3 quantization bits, and that sets as small as 3% of all possible values suffice to obtain
essentially the same results as true MLD. The presented acceptance criterion reduces in 96.8% the
number of candidates that must be evaluated for the C(24,12,8) code, with performance difference
relative to the Taipale-Pursley criterion never larger than 12%.

Key-Words: -Block codes, error correcting codes, information set, decoder, hardware, FPGA.

1 Introduction
No matter how well a decoding algorithm for error
correcting codes performs, it is of little use if its
complexity prevents it from being implemented. A
notable example is LDPC codes [1], proposed by
Gallager in the 1960s, whose implementation only
became viable in recent years, making it now one of
the most intensely studied classes of error-correcting
codes [2].

Most decoding algorithms for error-correcting
block codes use only hard decisions to demodulate
received symbols [3]. Although this approach
simplifies the decoding procedure, the use of analog
information may improve decoding performance up
to 3 dB in the case of Gaussian channels, and up to
10 dB on Rayleigh fading channels [4]. On the
downside, it increases the demand for computational
resources. Examples of algorithms that exploit this
extra information are Generalized Minimum
Distance (GMD) [5] and its variants [3].

Especially in iterative algorithms, there is usually
a tradeoff between throughput, error correction

performance, and computational resources. In order
to improve error correction, one can increase the
number of iterations or use additional information
(e.g., analog levels of the received symbols). In
order to improve throughput, one can accept a lower
error correcting performance or use more
computational power. When both error correction
and throughput must be improved, one possible
solution is to implement the algorithms directly in
hardware. Arithmetic operations that require a large
number of CPU cycles when implemented in
software can be performed in a single cycle when
dedicated hardware is available.

If computational power is not a limiting
resource, maximum-likelihood decoding (MLD) is
an optimal decoding procedure. However, since it
involves iterating through all possible codewords,
its computational cost is prohibitive. In order to
make this approach practical, the number of
candidates evaluated need to be reduced, at the
expense of an inferior decoding performance.

One approach to reduce the number of
computations is the use of anacceptance criterion.

WSEAS TRANSACTIONS on COMMUNICATIONS
R. P. Jasinski, W. Godoy Jr.,
A. Gortan, S. B. L. França, V. A. Pedroni

E-ISSN: 2224-2864 334 Issue 7, Volume 12, July 2013

The basic idea is to check the decoding efficiency
for each processed candidate, interrupting the search
when a predefined performance level has been
achieved.

This paper describes a design strategy that makes
viable hardware implementations of information-
set-based decoders with near-MLD performance.
This is achieved through four main developments:
(1) a criterion that reduces the number of candidate
codewords, without significant performance loss;
(2) a modified, hardware-friendlier version of the
Dorsch decoding algorithm; (3) detailed circuit
analysis and optimization in all critical parts (matrix
manipulators, data sorter, data memory, and data
path) that comprise the final circuit; and (4) a
hardware-oriented acceptance criterion, optimized
for physical implementation and requiring only a
simple test in the final stage to check whether a
given candidate is the maximum-likelihood output
of the decoder. The final hardware implementation
is described in detail, enabling the adoption of these
techniques in similar high-performance decoders.

The paper organization is as follows. Section 2
introduces the fundamentals of information-
setdecoding. Section 3 introduces a basic hardware
architecture that implementsthe original Dorsch
decoding algorithm. The next three sections discuss
alternative ways to improve the decoder
performance while still maintaining it suitable for a
hardware implementation. Section 4 analyses the
effects of quantizing the received word in the
decoder performance. Section 5 presents a method
to choose a small number of candidate codewords
that yield a performance close to MLD. Section 6
presents a new acceptance criterion that is suited for
a hardware implementation. Section 7 presents the
final hardware architecture, encompassing all three
improvements. Section 8 presents the results
obtained by synthesizing both implementations, and
section 9 summarizes the conclusions.

2 Information-Set Decoding
Consider a C(n, k, dHmin) linear block code with
codewords ci (i = 0 to 2k−1), minimum Hamming
distance dHmin, and generator matrix G (of size k×n).
The encoding procedure consists in multiplying a
message vector u (with k bits) by G to produce a
corresponding codeword c ∈C (with n bits).
However, the decoder receives x, a possibly
corrupted version of c, from which it extracts a
hard-decoded sequence r, along with a reliability
measure (based on the actual analog value) of each
symbol. The latter is needed in order to rank the
symbols in r according to their reliabilities,

originating the sorting sequence s, which allows the
use of soft decision.

G consists of k linearly independent (LI)
columns (usually, the identity matrix Ik) plus n - k
columns (linearly dependent on the previous ones)
responsible for adding the redundancy. In block
form, G can be represented as G = [I | P], where I is
a k×k identity matrix and P is a k×(n – k) parity
matrix.

An information set (IS) is defined as any set of k
LI columns in G [6]. Because of the redundancy
added by the encoder, it is not necessary to consider
all n bits to decode a received sequence. The core
principle of soft information-set decoding is to
consider only the k most reliable LI symbols in x to
reconstruct the original source message. Such
algorithm can be roughly summarized as follows.

a) Extract from the received codeword x the
hard-decoded sequence r and the corresponding
reliability sequence s.

b) Based on s, select the k most reliable symbols
in r and disregard the remaining n – k symbols.

c) Re-encode the k most reliable symbols using a
new Gn matrix, derived from the original G and
equivalent to it, but with unit columns in the k most
reliable positions.

One way of obtaining Gn is by inverting the
matrix formed by the k elected columns of the
original G, then multiplying the result by G. A
major problem in this procedure is that not all sets
of k columns from G are LI, so inversion might not
be possible. In such a case, another set of k symbols
must be chosen and the process repeated until k LI
columns (an IS) are found. Additionally, matrix
inversion is a very costly operation, in both software
and hardware.

Another approach, partially based on [7], but
with much simpler computations and for which a
guaranteed small search space is demonstrated, was
introduced in [8]. The generator matrix G is
manipulated using Gauss-Jordan transformations,
which can reduce any row or column to a unit
vector. The algorithm is summarized in Fig. 1 and
briefly described below, with a (7, 4) code used as
an example, whose generator matrix is shown in
Fig. 1(a). It is assumed that the ranked reliability
values (s) are those marked at the top of each block
in Fig. 1, which range from 1 (most reliable) to 7
(least reliable).

WSEAS TRANSACTIONS on COMMUNICATIONS
R. P. Jasinski, W. Godoy Jr.,
A. Gortan, S. B. L. França, V. A. Pedroni

E-ISSN: 2224-2864 335 Issue 7, Volume 12, July 2013

Fig. 1. Construction of the Gr and Gr0 matrices.

a) Extract from the received codeword the hard

decoded sequence r and the corresponding
reliability sequence s. The values of s are marked at
the top of Fig. 1(a).

b) Using Gauss-Jordan transformations, reduce
the k most reliable columns (MRCs) of G to unit
vectors. Even though there is no guarantee that the k
MRCs are LI, the process does not need to be
restarted when an LD columns is found; just replace
the least reliable among the MRCs with the next
MRC and proceed from there. This is illustrated in
Figs. 1(b)-(f).Column 6 (the MRC) was reduced in
Fig. 1(b), column 5 (the next MRC), in Fig. 1(c),
then column 7, in Fig. 1(d). In Fig. 1(e), the
algorithm failed to reduce column 3, indicating that

the set is not LI. Column 3 was then replaced with
column 2 (the next MRC), which was successfully
reduced in Fig. 1(f), resulting in a fully reduced
matrix Gr.

c) Create the matrix Gr0, which is simply Gr with
all unselected columns zeroed. This is shown in
Fig. 1(g).

d) Multiply r by Gr0 to obtain the initial source
message, u0.

e) Construct the set of all candidate messages by
simply flipping one bit of u0 at a time. Thus the total
number of candidate messages in this version of the
algorithm is k + 1 (represented by ui, i = 0 to k).

f) Finally, re-encode each candidate message (ui)
using ci = ui×Gr to get the candidate codewords (ci),
and measure the Euclidean distance between each of
these codewords andr in order to decide the winner.

3 Fundamental Hardware-
OrientedInformation-Set Decoder
This section introduces the hardware architecture for
the basic IS decoder. As will be explained later, the
number of bits used to encode each analog symbol
in x and the maximum number of candidate
codewords have a great influence on the overall
decoder performance. In the descriptions that
follow, we adopt 3 bits for the former and a generic
value m (≥ k + 1) for the latter.

The hardware architecture of the fundamental IS
decoder is depicted in Fig. 2. It consists of 5 main
blocks: (1) input sorting and demodulation, (2)
modified Gauss elimination of the G matrix, (3)
candidate messages generation, (4) candidate
codewords generation, and (5) best candidate
selection.

The overall decoding process proceeds as
follows. Block 1 receives a digitized version x of the
analog received word, from which it produces the

Fig. 2. Decoder hardware diagram.

WSEAS TRANSACTIONS on COMMUNICATIONS
R. P. Jasinski, W. Godoy Jr.,
A. Gortan, S. B. L. França, V. A. Pedroni

E-ISSN: 2224-2864 336 Issue 7, Volume 12, July 2013

reliabilities vector s and the received word
demodulated in a hard-decision fashion r. Block
2 receives the original generator matrix G and the
reliabilities vectors, and performs a modified Gauss
elimination on G, producing two new matrices
called Gr (reduced matrix) and Gr0 (reduced
transformation matrix). Block 3 receives Gr0 (from
block 2) and r (from block 1), and produces
sequentially a set of m candidate messages uj. Block
4 receives Gr (from block 2) and the candidate
messages uj (from block 3), producing, for each, a
corresponding candidate codeword cj. Block 5
receives cj (from block 4) and x, and evaluates each
of the m candidate codewords in order to produce
the final output c’, which is the candidate with the
smallest soft-distance with respect to x.

The implementation details and computational
performance of each block are described next. In the
detailed diagrams, clock and reset signals are
omitted for better clarity.

3.1Block 1: Input Sorting and Demodulation
Block 1 produces the hard-decoded version r from
the received word x, a simple operation that consists
in checking the most significant bit (i.e., the sign
bit) of each digitized input symbol. As shown in
Fig. 3, a simple ≥4 comparator suffices, since 3 bits
(and therefore 8 possible levels) were employed to
digitize the input analog values. In this case, values
of x in the 0-to-3 range are decoded as zeros, while
those in the 4-to-7 range are decoded as ones.

Vector s is a list of integers from 1 to n,
indicating the position of each bit fromxin order of
decreasing reliability. The first value in s indicates
the position of the most reliable bit in x. Because the
received analog values are normalized in the −1 to
+1 range, the closer a bit value is to −1 or +1, the
more reliable it is; conversely, the closer it is to 0,
the least reliable it is. This vector is generated by a
linear insertion sorter, based on the architecture
described in [9]. Since the analog values are ordered
as they are shifted into the sorter, block 1 outputs
become available after n clock cycles.

sorter S(i) = j | rwa(j)=β (i)

≥4

β

x s

r

Fig. 3. Block 1: Input Sorting and Demodulation.

Sorting algorithms usually operate iteratively on

an array of elements, and therefore the
computational complexity is a function of the

problem size, n. For example, the bubblesort
algorithm presents O(n2) complexity, while
quicksort has O(n log n). If the software runs in a
single-processor CPU, no matter how optimized,
this timing characteristic cannot be helped. On a
custom hardware implementation, other choices are
available, such as in the insertion sorting algorithm.
This algorithm has an average and worst-case
complexity of O(n2) [10], meaning that the average
number of computations to sort a randomly ordered
list is proportional to the square of the number of
elements n in the list.

For a single-processor machine, this dictates that
the time to sort a list grows quadratically with its
size. However, although the number of
computations must be the same in either hardware
or software, the timing complexity can be greatly
reduced. By using replication, a hardware
implementation can perform many computations in
parallel. For example, Fig. 4 shows a parallel
implementation of a linear sorter withO(n) time
complexity, employed in our implementation.
Because sorting is the first operation performed on
the received word, it has a significant impact in the
throughput of the decoder. A constant goal in out
hardware implementation was to keep the number of
clock cycles to decode a word as linear as possible,
with respect to the size of the received word.

Fig. 4. Hardware implementation of a linear

insertion sorter.

3.2 Block 2: Modified Gaussian Elimination
Block 2 receives the reliabilities vector s produced
by block 1 and the code’s original generator matrix
G, from which it produces the matrices Gr (reduced
G matrix) and Gr0 (reduced transformation matrix)
described in Section 2. As shown in Fig. 5, the

WSEAS TRANSACTIONS on COMMUNICATIONS
R. P. Jasinski, W. Godoy Jr.,
A. Gortan, S. B. L. França, V. A. Pedroni

E-ISSN: 2224-2864 337 Issue 7, Volume 12, July 2013

ordering of the reduced columns is dictated by s.The
elimination proceeds until k LI columns are found.

In the first iteration, a temporary data structure
called the working matrix (WM) is loaded with G.
In subsequent iterations, WM is transformed via
Gauss-Jordan operations, until an identity matrix is
found. Because it may take a variable number of
cycles to obtain k LI columns, the outputs will be
available somewhere between k and n – dmin + 1
clock cycles, as demonstrated in Theorem 1.4.15 of
[11]. Gr0 will be used to extract from the received
word only those bits in the positions indicated by
the IS. Gr will be used to re-encode the k-bit
candidate messages, generating the series of n-bit
candidate codewords.

1 0

WM

swap rows

eliminate

=k

G

Groutput_ready

reset

iteration counter

elimination counter

row & col. selects

=1

WGpe

Gr0

Fig. 5. Block 2: Modified Gaussian elimination.

3.3 Block 3: Candidate Messages Generation
Block 3 is responsible for generating a series of m
candidate messages, one per clock cycle. In the
subsequent stages, these candidates are evaluated to
select the one that most closely resembles the
received word. This is an iterative process,
controlled by the iteration counter present in Fig. 6.

In order to obtain the original candidate message
u0, the bits from r corresponding to the selected
information set must be extracted and rearranged.
This is done by multiplying the hard-decoded
sequence r by matrix Gr0

T, using a hardware
structure called a vector-matrix multiplier (VMM),
which was shown as a symbol in Fig. 2. In Fig. 6,
this VMM is shown in more detail, at the circuit
level. No that even though matrix operations using
real numbers tend to be complex, this is not the case
with boolean matrices; as can be seen in Fig. 6, this
operation is performed with simple AND and XOR
gates.

The fundamental version of the decoder
generates k candidate messages, by flipping one bit
at a time from the original message u0. For example,
for a code with 4 information bits (k=4), the
corresponding flipping patterns would be 0001,

0010, 0100, and 1000. In total, m = k + 1 messages
are evaluated, because the original message with no
bits flipped is also a valid candidate. In Sec. III, this
number of candidates will be extended to improve
the performance of the decoder. Additionally, more
complex bit patterns will be used.

The bit-flipping patterns are stored in a ROM,
and are summed with the original candidate
message u0 to produce the series of candidate
messages. This operation (a modulo-2 addition) is
very simple in hardware, and is equivalent to a
bitwise XOR of the original message u0 with each
bit-flipping pattern.

r1

Gr0
T

11

rn
Gr0

T
n1

r2
u1

r Gr0
T

MOD-m
counter

m×k
ROM

A D

Gr0
T

21

bit-flipping patternsiteration counter

vector-matrix multiplier, bit 1 vector-matrix multiplier, bit k

modulo-
2 adder

u0

k

k

n n×k

r1

Gr0
T

11

rn
Gr0

T
n1

r2
u1

Gr0
T

21

k

Fig. 6. Block 3: Candidate messages generation.

3.4 Block 4: Candidate Codewords
Generation
Block 4 is responsible for producing a candidate
codeword cj from each candidate message uj
generated in block 3. This operation consists in re-
encoding each message using the rearranged
generator matrix Gr. As in block 3, a vector-matrix
multiplier is used (Fig. 7). This operation is entirely
sequential, and the outputs are available at the next
clock cycle.

u(j)1
Gr11

u(j)k
Grk1

u(j)2
C(j)1

Gr1n

Grkn

Gr2n

C(j)n

u(j) Gr

Gr21

vector-matrix multiplier, bit 1 vector-matrix multiplier, bit n

cj

n

u(j)1

u(j)k

u(j)2

k n×k

Fig. 7. Block 4: Candidate codewords generation.

WSEAS TRANSACTIONS on COMMUNICATIONS
R. P. Jasinski, W. Godoy Jr.,
A. Gortan, S. B. L. França, V. A. Pedroni

E-ISSN: 2224-2864 338 Issue 7, Volume 12, July 2013

3.5 Block 5: Candidates Evaluation and
Selection
Block 5 is responsible for ultimately selecting the
best candidate (i.e., the one that most closely
resembles the analog received word) and producing
the output of the decoder. In maximum-likelihood
decoding (MLD), the decoding algorithm consists in
selecting the codeword with the shortest Euclidean
distance to the received word. In the presented
architecture, a simpler soft-distance between each
candidate ccj and the received analog word x is
calculated as described in [12]: for each received
symbol represented as a 3-bit quantized level x, the
bit distance is 7-x to a code bit value ‘1’, and x to a
code bit value ‘0’. The total distance between these
two words is the sum of all individual bit distances.
After calculating this metric for each candidate, the
codeword with the smallest distance to the received
analog word is selected as the output of the decoder.
Each candidate word is evaluated in one clock
cycle; therefore, if a number of candidates greater
than k+1 is used, it can have a significant impact on
the decoder performance.

1
0

cj(1)

7-x(1)

x(1)

cj(0)

x(0)

7-x(0)

⋮
1
0

cj(n)

7-x(n)

x(n)

d‹cj,x›cj n

cj c’

x
n

Σ
1
0

D
 en

Q

D
 en

Q

A
B

A<Bn
n

n

n n

Fig. 8. Block 5: Candidates evaluation

and selection.

4 Quantization Effects and Number of
Bits
A crucial decision in any digital hardware
implementation is the minimum number of bits
needed to represent the involved signals, which
should be kept as low as possible in order to save
resources (area, power consumption, etc.). The
purpose of this section is to investigate the effect of
quantization on the IS decoder performance, and
from it to derive the minimum number of bits that
should be adopted.

In order to conduct such analysis, it is necessary
that the signal characteristics be either well known
or, at least, consistently modeled. In soft decision
decoding of block codes, the received signal

generally undergoes a normalization process, so the
signal’s mean and standard deviation get divided by
a constant. Even though such normalization does not
affect the standard normal variable and the bit error
rate, it does change the signal’s sensitivity to the
number of discretization intervals.

We start the analysis by examining the influence
of the number of quantization intervals on the SNR,
from which we obtain analytical expressions that
can be used to fine tune the number of levels used in
the decoder. Next, the results are validated both by
determining the convolution of the signal
distribution with the quantization noise distribution,
and by showing the results from Matlab simulations.
Finally, the minimum number of bits is obtained and
conclusions are presented.

4.1 Influence of received signal
normalization on its standard deviation
For a code of length n and message length k, with
BPSK modulated components of amplitude ±A,
under the influence of an AWGN channel with a
signal-to-noise ratio Eb/N0, the standard deviation is
[13]

 (1)

where the subscript r denotes real standard
deviation (as opposed to that after signal
normalization).

In order to preserve the relative symbol
reliabilities, the receiver/demodulator executes
signal normalization for every block of n symbols
by dividing all n values by the greatest signal
modulus of all n symbols. This way, symbol
amplitudes become normalized between ±1.
Truncation of outliers, although a common practice,
will be disregarded. Such normalization produces a
signal compression given by

 ,
(2)

where the subscript n means normalized and µext is
the average of the extreme (greatest) values in each
block.

The value of µext can be derived with the help of
the theory of order statistics. Using the theory in
[14], for example, one can obtain the distribution for
the extreme values and, from it, the mean value µext.
Fig. 9(a) shows the resulting theoretical distribution
of extreme values for the C(48,24,12) code, for
several signal-to-noise ratios. To validate these

WSEAS TRANSACTIONS on COMMUNICATIONS
R. P. Jasinski, W. Godoy Jr.,
A. Gortan, S. B. L. França, V. A. Pedroni

E-ISSN: 2224-2864 339 Issue 7, Volume 12, July 2013

results, simulations were performed with
105randomly generated codewords, and their
extreme values were plotted as histograms in Fig.
9(b). As can be seen, the theoretical and the
experimental values are virtually the same.

Fig. 9. (a) Theoretical extreme values

distribution for C(48,24,12) and
(b) corresponding simulation histograms.

Additional simulation results are presented in

Table 1, for three codes. As can be seen in the last
two columns, the theoretical and the experimental
values are again very close.

4.2 Influence of number of quantization
intervals
The discretization of a signal with a finite number of
quantization levels, where each level has an
amplitude q, introduces a random error of amplitude
± q/2. In general, simulation models equate
quantization in levels of amplitude q to a uniformly
distributed noise between +q/2 and – q/2, with zero
mean and variance q²/12. However, Widrow [15]
showed that such a model, called
pseudoquantizationnoise (PQN) model, is only an
approximation, valid under certain conditions. The
original goal of Widrow's analysis was to
investigate the conditions under which the
probability distribution and other statistics of the
original signal could be recovered without errors
from the quantized signal. However, his results can
be applied here to validate the applicability of the
PQN model to our investigation.

According to Widrow, the PQN model performs
well with quantization intervals up to one standard
deviation, with precision better than one part in 107
for standard deviation estimates of Gaussian
distributed signals. Dorsch [7] suggested using a
quantization interval value of 0.35σ for computer
simulations of quantized signals. Our study will
assess the consequences of discretizing a normalized
signal with from 3 to 8 quantization bits (thus with
23 = 8 to 28 = 256 quantization intervals). For a
normalized signal in the ±1 interval, this means
amplitude intervals q from 2/23 = 0.25 to 2/28 =
0.0078127. When compared to the σn values in the
last columns of Table 1, q<σn in all cases,
warranting the application of the PQN model
without further restrictions.

Table 1. Standard deviation of normalized
values.

By applying the PQN model, the quantized
signal can be represented as a random variable
resulting from the sum of two independent random
variables (Fig. 10); one is the Gaussian distributed
normalized signal with mean µn = 1/µext and
standard deviation σn

2 = (σrµext) 2, and the other is a
uniformly distributed variable due to noise in the
±q/2 interval with mean µu = 0 and variance σu

2 =
q²/12.

WSEAS TRANSACTIONS on COMMUNICATIONS
R. P. Jasinski, W. Godoy Jr.,
A. Gortan, S. B. L. França, V. A. Pedroni

E-ISSN: 2224-2864 340 Issue 7, Volume 12, July 2013

Fig. 10: PQN model for evaluation of

quantization noise effects.

Since the random variables involved in the sum

are statistically independent, the resulting mean will
be the sum of their means, and the resulting variance
the sum of their variances. By denoting the
quantization interval as a fraction α of the resulting
standard deviation, we can write:

α = q/σn→q = α.σn (3)

Therefore:

, (4)

where the subscript eq stands for equivalent, as
indicated in Fig. 10.

Eq. 4 shows that the normalized signal standard
deviation grows by a factor (1 + α²/12)1/2.
Furthermore, because the model is linear, the
standard deviation σr eq of the equivalent Gaussian
distributed noise can be estimated by multiplying
both members of equation (4) by µext:

(5)

Using equation (5), we can determine the SNR

degradation due to noise. By rewriting equation (1):

 (5)

Then setting σr = σr eq and using equation (5):

 (6)

the following results:

 (7)

Table 2 and Fig. 11 summarize the resulting
degradation for three codes. An important
conclusion is that there is very little to gain by using
more than 3 quantization bits, and essentially no
gain at all by using 5 bits or more. For example, for
the C(48,24,12) code operating in a channel with
Eb/N0 = 5 dB, Table 2 shows that the effect of using
only 3 bits (instead of 5 or more) is the same as
having a channel with Eb/N0 reduced to 4.67 dB; or
reduced to 0.77 dB if operating in a channel with
Eb/N0= 1 dB. Whether such (small) degradation is
acceptable or not depends on the application, for
which the quantification presented in this analysis
provides the needed information. For the reasons
presented above, 3 bits were employed in the
hardware implementations described in this paper.

Fig. 11: SNR degradation due to quantization.

Σ

Gaussian
distribution
µ = µn = 1/µext
σ = σn= σr / µext

Uniform distribution

 0 / 12

Equivalent
distribution

µeq = µn + µu
σ2

eq = σ2
n + σ2

u

WSEAS TRANSACTIONS on COMMUNICATIONS
R. P. Jasinski, W. Godoy Jr.,
A. Gortan, S. B. L. França, V. A. Pedroni

E-ISSN: 2224-2864 341 Issue 7, Volume 12, July 2013

Table 2. SNR degradation due to quantization.

4.3 Validation of the PQN model
The previous section showed how to determine the
equivalent standard deviation and corresponding
degradation in SNR of the quantized signal.
Because the reference model to evaluate decoding
performance is that of a channel under additive
white Gaussian noise, a natural question that arises
is how far the quantized signal departs from this
model.

The employed PQN model consists of a sum of
random variables with different probability density
functions (PDFs). Such sum is also a random
variable, and its PDF is the convolution of the PDFs
of the summed variables. We want to examine how
much the result of this convolution might differ
from a true Gaussian distribution.

Results from such convolution are depicted in
Fig. 12. In Fig. 12(a), a ratio α = q/σn = 4 was
employed, only to further highlight the difference
between the convolution results a Gaussian variable
with the same standard deviation. Nevertheless,
even in this extreme scenario, the difference
between the two curves is less than 2.5%. In the
scenarios considered in our study, α< 1, and the
resulting difference is never greater than 0.4%. Fig.
12(b) shows the case for α = 1; note that the normal
curve and the convolution result are
indistinguishable. This figure was vertically
truncated in order to better highlight the compared
curves.

Fig. 12: Convolution of signal and quantization

noise for (a) α = 4 (β)α = 1.

4.4 Validation of quantization effects
The previous sections showedthat the discretization
of the normalized signal is equivalent to a
degradation of the SNR, and provided the means to
quantitatively determine this degradation.

However, the ability to estimate an equivalent
SNR is no guarantee that a decoding algorithm will
perform equivalently with a quantized signal as it
would perform with a non-quantized signal in a
correspondingly reduced signal-to-noise ratio
scenario. The reasoning behind this is that the real
PDF is not Gaussian in nature but, according to
Widrow [15], it consists of a series of Dirac
impulses of area equal to the corresponding area
under the equivalent normal curve, as shown in Fig.
13.

Fig. 13: Signal distributions before (x) and after

(xq) quantization.

In order to understand the distributions shown in

Fig. 13, we must consider that the quantization
process rounds off all values in one interval to its
central value. In other words, the whole interval area

WSEAS TRANSACTIONS on COMMUNICATIONS
R. P. Jasinski, W. Godoy Jr.,
A. Gortan, S. B. L. França, V. A. Pedroni

E-ISSN: 2224-2864 342 Issue 7, Volume 12, July 2013

under the normal curve becomes concentrated into a
single point at the center of the interval. Therefore,
the impulse areas correspond to the sample values,
taken at the center of the interval, of the convolution
of the non-quantized signal with a rectangular pulse
corresponding to the uniformly distributed PQN
noise.

Given the real nature of the PDF of the quantized
signal, it is reasonable to inquire whether the
decoder performance is the same in both situations:
with the quantized signal, or with a non-quantized
signal and the correspondingly reduced signal-to-
noise ratio, as derived above. In order to clear this
last point, simulations were performed with 105
randomly generated codewords, comparing the
decoder performance using both the quantized and
non-quantized signals against the non-quantized
version, always with the correspondingly reduced
signal-to-noise ratio. As an example, Fig. 14
illustrates the assignment of discrete values to the
quantization intervals used in the case of 8
quantization intervals. Fig. 15 shows simulation
results for this case (8 intervals), where it can be
seen that the curves for the quantized signal and for
the non-quantized signal with SNR reduction
practically coincide, confirming the theoretical
predictions made above.

An important conclusion of this section is that
the curves, tables, methods, and equations presented
are a valid tool to enable a hardware designer to
balance resource usage against the performance
degradation introduced through discretization of the
analog received signals.

Fig. 14: Discrete values assignment for 8

quantization intervals

Fig. 15: Validation of the quantization effects (8

intervals) for several codes.

5 Number of Codewords
Soft maximum-likelihood decoding (MLD)
algorithms consist in computing the Euclidean
distance between a received sequence and all
possible 2k codewords, then choosing the candidate
with the smallest distance. Longer codes offer better
error-correction performance; however, the number
of comparisons grows exponentially with k.
Nevertheless, we demonstrate in this section that it
is possible to select a relatively small number of
codewords with a very high probability of
containing the best candidate. This greatly reduces
the number of comparisons and speeds up the
decoding process.

The strategy to obtain the most likely candidates
for a given block code C(n, k, d) consists in the
following steps:

+1

-1

 0

+0,875
+0,625
+0,375
+0,125
- 0,125
- 0,375
- 0,625
- 0,875Normalized signal range ± 1 Discretized signal ranges

(8 levels)

WSEAS TRANSACTIONS on COMMUNICATIONS
R. P. Jasinski, W. Godoy Jr.,
A. Gortan, S. B. L. França, V. A. Pedroni

E-ISSN: 2224-2864 343 Issue 7, Volume 12, July 2013

i) Randomly generate a large number of
codewords c∈C, subjected to additive white
Gaussian noise.

ii) Estimate the probability of occurrence for
every possible error pattern, based on the measured
number of occurrences of each error pattern.

iii) Sort the error patterns according with the
measured probability.

From this, a fixed set of error patterns (called bit-
flipping patterns, in Section 3) for a given code is
obtained, which are sorted by decreasing probability
of the corresponding error occurrence. The number
of bit-flipping patterns (m) can be chosen according
to the desired level of decoding performance.
Simulations have shown that choosing m from 3%
to 5% of 2k produces results which are practically
indistinguishable from true MLD results.

Once the bit-flipping patterns for the code are
found, a set of highly probable candidates for each
received sequence x can be determined as follows.

i) The n symbols of the received sequence x are
sorted in order of decreasing reliability.

ii) The code generator matrix G is then
manipulated via Gauss-Jordan transformations, in
order to determine the positions of the k most
reliable and linearly independent symbols of x.
These will be the positions which correspond to the
first k unitary columns of the transformed matrix Gr,
as explained in Section 2.

iii) The k most reliable and linearly independent
symbols from x are extracted, forming the most
likely message u0 (hereafter called the reference
candidate message), from which c could have been
originated by multiplying u0 by Gr.

iv) The bit-flipping patterns are then applied to
u0, generating a set of alternative messages {u0, u1,
u2,…, um}. This set of messages ui is then
multiplied by Gr, producing the set of candidate
codewords {c0, c1, c2,…, cm}.

In general, the most likely candidates are those
resulting from message words with just one bit
flipped, followed by those with two bits flipped, and
so on. However, this is not the case for all patterns.
Moreover, it is necessary to determine which,
among all candidates with the same number of bits
flipped, is the most likely, so exhaustive simulations
are indeed needed to rank the bit-flipping patterns.

The most relevant conclusion is that after
inspecting just the candidates with one or two bits
flipped the decoder already reaches a performance
very near (>99%) that of MLD; this means that
more than 99% of the bit errors that would be
corrected with MLD decoding are corrected by the
proposed approach. In other words, instead of
inspecting all 2k words (as in MLD), only very few

are indeed needed to reach practically the same
performance.An example is shown in Table 3, for
the C(24,12,8) code.

Table 3.Decoder performance relative to MLD as
a function of the number of candidate

codewords, for the C(24,12,8) code.

Note that after inspecting only m=25 (properly

chosen) candidates, nearly 98% of the performance
that would be attained with all 4,096 candidates is
achieved. Observe also that with m=100 candidates
(that is, just 2.44% of the possible cases), the
performance is already near 99.8%. This selection
procedure, which allows m to be small, is crucial to
make the hardware implementation viable.

Additional results are presented in Fig. 16,
showing the performance degradation for several
codes with respect to MLD as a function of the
number of candidates, under several noise
conditions.

Fig. 16. Performance degradation (in dB) with
respect to MLD, as a function of the number of

candidate codewords.

This graphgives the number of candidates that

must be evaluated to achieve the desired decoding
performance. For example, to operate with at most
0.1 dB of degradation with respect to MLD, we take
the corresponding horizontal line in Fig. 16, from
which the following results, for the worst case
(Eb/N0 = 5 dB):

- For C(15,7,5): 5 candidates, out of 128 words.

WSEAS TRANSACTIONS on COMMUNICATIONS
R. P. Jasinski, W. Godoy Jr.,
A. Gortan, S. B. L. França, V. A. Pedroni

E-ISSN: 2224-2864 344 Issue 7, Volume 12, July 2013

-For C(24,12,8): 12 candidates, out of 4,096
words.

-For C(48,24,12): 100 candidates, out of
16.8×106 words.

-For C(66,33,12): 400 candidates, out of 8.6×109
words.

6 Acceptance Criteria
The original soft maximum-likelihood decoding
(MLD) algorithm computes the Euclidean distance
between a received sequence and all codewords in a
given code, and then chooses the candidate with the
smallest distance to the received sequence. On the
other hand, soft information-set decoding allows the
number of comparisons to be greatly reduced, while
being still very likely to contain the winning
codeword.

The number of comparisons can be reduced even
further with the inclusion of acceptance criteria. An
acceptance criterion (also called a stop criterion,
early termination rule, or stop rule) is a test which
can immediately identify a given codeword as the
best possible candidate, which is then declared the
winner, abbreviating the decoding procedure.

As a trivial example for a stop rule, consider a
check of the Euclidean distance between the
received sequence and a given codeword. If this
distance is less than the minimum Euclidean
distance of the code, the candidate can be instantly
declared as the correct output of the decoder.
However, although this criterion is easily applicable,
it has a low efficiency because it can only identify a
small fraction of the actual maximum-likelihood
candidates, having therefore little impact on the
average number of computations.

There are, however, other acceptance criteria,
with different degrees of efficiency and
computational demands. This section reviews the
main stop criteria and describes a new one (HO-
BGW), which is hardware-oriented and is used in
the final implementation of our IS decoder.

Before we start, it is important to mention that
the efficiency of a stop rule can be immensely
enhanced by ordering the candidates according to
some probability measure (so the most likely are
tested earlier), which indeed occurs in the proposed
method.

6.1 Generalized Minimum Distance (GMD)
Criterion
The GMD acceptance criterion [5] states that for a
given code of length n and minimum Hamming
distance dHmin, given a received sequence x and a

candidate codeword c modulated in BPSK, if the
condition

 (9)

is satisfied, where 〈x,c〉 denotes the inner product
between x and c, then c is unique, 〈x,c〉 = 〈x,c〉max,
and therefore the Euclidean distance between x and
c is minimum.

Although the GMD criterion has a simple
implementation, it is not used in practice because of
its low efficiency. As will be shown later,
simulations of GMD with a C(15,7,5) code indicate
an average reduction in the number computations of
only 1.77%, for an Eb/N0 ratio of 5 dB.

6.2 Hypercone Rule
The hypercone rule [16][17] is based on the
principle that if the angle between the received
codeword and a candidate is less than half the
smallest angle between any two codewords, then the
received word is within the Voronoi region of the
candidate. This criterion is valid for all cases where
all codewords have the same module. It can be
expressed mathematically as follows:

 (10)

or

, (11)

where the radical on the right side of equation (11)
is always a constant, dependent only on the code
parameters dHmin and n.

Later, Godoy et al [17] demonstrated that a
received vector v belongs to the Voronoi region of a
candidate c if and only if the hybrid sum of vandc
belongs to the Voronoi region of the null codeword
c0, that is:

, (12)

where V(c) stands for the Voronoi region of . On
the other hand, it is also possible to set c to the null
codeword c0 in equation (11). If all components are
BPSK encoded, equation (11) is reduced to:

 (13)

WSEAS TRANSACTIONS on COMMUNICATIONS
R. P. Jasinski, W. Godoy Jr.,
A. Gortan, S. B. L. França, V. A. Pedroni

E-ISSN: 2224-2864 345 Issue 7, Volume 12, July 2013

Denoting the hybrid sum of v and c by vs, and its
components by vsi, the hypercone acceptance
criterion can be rewritten as:

 (14)

This last form is more efficient when the hybrid

sum has already been computed by another
algorithm, or when computing the hybrid sum is
simpler than computing the inner product.

6.3 Taipale-Pursley Criterion
The acceptance criterion proposed by Taipale and
Pursley [3] can be summarized as follows. Consider
a code C with minimum Hamming distance dHmin, a
received sequence x (whose symbols xjdelivered by
the demodulator have a reliability measure βj, 0< βj<
1), and a candidate codeword c. The latter is the best
candidate if the following condition is satisfied:

, (15)

where S is the set of indices j such that the
components cj (of c) and xj (of x) have opposite
signs, i.e., S = {j | sgn(cj) ≠ sgn(xj), 0 ≤ j ≤ n} (this
set has cardinality |S|). Tis the set of δ = dHmin - |S|
indexes in the complementary set of S that have the
smallest values for βj.

6.4 Barros-Godoy-Wille (BGW) Criterion
It was demonstrated in [16] that the BGW criterion
has a better performance than GMD or Hypercone.
It was also demonstrated independently in [18] that
its performance is equivalent to that of Taipale-
Pursley; however, the BGW criterion employs a
different approach, much simpler to implement in
hardware. To better understand its derivation, we
will initially review the definitions of the Voronoi
region and hybrid sum [18].

Definition: The Voronoi region V(ci) of a
sequence ci∈C is defined as the set of vectors

 that are close to ci, obeying the following
relationship:

 (16)

Definition: The hybrid sum operation [+]
between a sequence and a sequence
is defined by the equation below, where x.ci is the
term-by-term product of x and ci:

 (17)

Property 1: The operation [+] simply changes
the sign of the components of x if the correspondent
components of ci are equal to one. The reliabilities
of the symbols in the sequence are the
same as in the sequence x.

Theorem: Consider a code C with minimum
Hamming distance dHmin, a codeword ci (with
components cij), and a sequence x, (with
components xj). The codeword ci is considered the
best candidate codeword for x if the following
condition is satisfied:

, (18)

where Q is the set of dHmin indexes j such that the
components in the sequence have the
highest numerical values (most positive or least
negative).

Proof: Suppose that ; then, by
Definition 1:

 (19)

Writing the Euclidean distance in terms of inner

product:

 (20)

Inequality (20) can be rewritten as:

 (21)

Assuming that ,

with as its complementary set, we have:

(22)

Observing that and
, the second sum in both sides cancel

out and we obtain:

 (23)

Using Definition 2:

 (24)

WSEAS TRANSACTIONS on COMMUNICATIONS
R. P. Jasinski, W. Godoy Jr.,
A. Gortan, S. B. L. França, V. A. Pedroni

E-ISSN: 2224-2864 346 Issue 7, Volume 12, July 2013

It is sufficient to consider in the equation above
only the closest codewords, such that |W|= dHmin.

Finally, we consider the following property: if
the sum of the dHmin components of highest
numerical values in a given sequence is less or equal
to zero, than the sum considering any other dHmin
components is also less or equal to zero. Therefore,
the equation above is satisfied if:

, (25)

which concludes the proof.
Corolary 1: The sequence x belongs to the

Voronoi region of the zero codeword c0 if:

 (26)

This criterion was called Sum Rule, and its

performance was demonstrated to be superior (less
stringent) than that obtained with the GMD or the
hypercone criterion [16][17][18].

6.5 Hardware-Oriented BGW (HO-BGW)
The fundamental motivation for the HO-
BGW(Hardware-Oriented BGW) criterion was to
produce a feasible hardware implementation, while
keeping a performance level close to the original
BGW.

Acceptance tests are one of the final steps in the
decoding process. Because they must be executed
once for each candidate, they should not take longer
than generating such a codeword, otherwise the test
would represent a bottleneck for the entire decoding
process.

Despite being a major constraint, this problem
exists in all of the previous criteria. Moreover, such
criteria employ complex operations, such as
summations, sorting, and other iterative procedures,
and require several clock cycles to be evaluated.
The HO-BGWcriterion overcomes this limitation by
making use of the already available symbol
reliability ordering. Recall that the BGW requires
the symbols to be ordered according to their signed
values, in order to isolate the dHmin most positive
ones. While symbol reliability ordering is based on
absolute values instead of signed values, this
ordering can still be used if sign information for
each symbol is available. Fortunately, as will be
shown, in soft IS decoding the candidates generation
is such that sign information will always be
available for the k most reliable symbols. To make
this statement clear, an example is provided below.

Consider a C(15,7,5) code and a received
sequence x. Applying the information set decoding
algorithm, a set of q candidates {c0, c1, … cq-1} can
be obtained, whose hybrid sum with x generates the
set {x’0, x’1, … x’q-1}. Fig. 17(a) illustrates the
reliabilities-based ordering of x’0.

Fig. 17. Reliability-based ordering of (a) x’0 and

(b) x’1 components.

The dashed line indicates the absolute value

ordering, obtainedwithy standard IS decoding. The k
leftmost (and most reliable) symbols were obtained
by abrupt decision. Since these symbols were used
to reconstruct the codeword c0, those positions have
the same polarity in x and c0. It follows, by
definition of the hybrid sum, that the first k positions
of x’0 are all negative. For these reasons, the most
positive values in x’0 (which would be used by the
original BGW algorithm) will be in the dHmin
rightmost positions. These values must be summed
and their sum must result negative. We will refer to
this requirement as condition C1. The values to be
summed in order to verify condition C1 can be
selected by a mask m1. In this example, the value of
m1 for the first candidate is:

 (27)

However, the stop condition will only be valid if

the central k - dHmin positions in x’0 (labeled with
question marks in Fig. 17(a)) are negative. These
values can be selected by a mask m2, which
indicates the positions that should not be negative
for the rule to be valid:

 (28)

We will refer to this second condition as C2. In

the case of Fig. 17(a), the sum of the five rightmost
values of x’0 is negative (condition C1) and the

WSEAS TRANSACTIONS on COMMUNICATIONS
R. P. Jasinski, W. Godoy Jr.,
A. Gortan, S. B. L. França, V. A. Pedroni

E-ISSN: 2224-2864 347 Issue 7, Volume 12, July 2013

central k – dHmin positions are all negative (condition
C2), so c0will be declared as the best possible
candidate.

At this point, the HO-BGW algorithm would
stop, but, in order to better illustrate the algorithm
operation, we proceed to analyze the next iteration.
Fig. 17(b) illustrates the reordering of the next
hybrid sum in the set, x’1. This hybrid sum was
obtained from c1, in which one of the symbols (the
least reliable among the most reliable k symbols)
was flipped, according to the bit-flipping pattern
0000001. In this case, the flipped symbol is not only
positive, but also, due to the reliability ordering,
more positive than any of the rightmost dHmin
symbols, and so it should be exchanged with one of
the dHmin rightmost symbols.

This is the point where the HO-BGW deviates
from the original BGW. The flipped position should
replace the most negative of the least reliable dHmin
symbols; however, here only absolute reliability
information (and not polarity) is available, so we
settle for substituting the most reliable among the
least reliable dHmin symbols, noting that this will be
valid only if the replaced symbol was indeed
negative. This is the reason why we need to check
condition C2 in addition to C1, and also the reason
why the HO-BGW is slightly less efficient than the
original BGW criterion: it will not be able to operate
on the (small number of) candidates that have
positive valuesin the set of symbols selected by
mask m2 (indicated by question marks in Figs.
17(a)-(b)).

For the hybrid sum x’1, the values of m1 and m2
are:

m1,1 = {0000001 000 01111} (29)
m2,1 = {000000011110000} (30)

The generation of masks m1 and m2 is simple: the

first k bits of m1 are the same as the bit-flipping
patterns used to generate the candidate codewords.
The last bit positions will be filled with as many
ones as necessary for the mask m1 to have exactly
dHmin bits one. As for mask m2, its first k positions
will always be zero and its last n – k positions will
be the complement of the n – k bit positions of m1.

6.6 Comparison between BGW and
HO-BGW
A direct comparison between these two acceptance
criteria is presented below.

BGW
1) Sort x’n in descending order of signed values.
2) Sum the first (most positive) dHmin values.

3) If this sum is negative, c is the best candidate.

HO-BGW
1) Sort x’n in descending reliabilities order (absolute
values).
2) Sum the values in the positions indicated by mask
m1; condition C1 is true if this sum is negative.
3) Check the values in the positions indicated by m2;
condition C2 is true if none is positive.
4) If C1 and C2 are true, c is the best candidate.

An important conclusion from this comparison is
that they are simple enough for the HO-BGW
criterion to be incorporated in the hardware, without
substantial additional resources. Moreover (and very
importantly), the HO-BGW test can be performed in
a single clock cycle.

6.7 Comparison of stop criteria efficiency
A numeric performance comparison between BGW
and HO-BGW is presented in Table 4. As can be
seen, HO-BGW achieves its best result with the
C(24,12,8) code, with a reduction of 96.8% in the
number of candidates that must be evaluated. The
performance difference between BGW and HO-
BGW varies with the code length and the signal-to-
noise-ratio, but it is always under ~12% for the
testedcodes. On average, the HO-BGW criterion
provided a reduction of 69.6% on the number of
candidates that must be evaluated, against 77.9% of
the original BGW criterion.

Table 4. Reduction in the number of iterations
(in %).

7 Enhanced Hardware-Oriented
Information-Set Decoder
This section introduces the final hardware
implementation for ourIS decoder with the HO-
BGW acceptance criterion included. The circuit,
based on that introduced in Fig. 2, is shown in Fig.
18. Afundamental feature of this implementation is
that the acceptance test of each candidate is
performed in a single clock cycle. Because the
generation of a candidate also requires one clock

WSEAS TRANSACTIONS on COMMUNICATIONS
R. P. Jasinski, W. Godoy Jr.,
A. Gortan, S. B. L. França, V. A. Pedroni

E-ISSN: 2224-2864 348 Issue 7, Volume 12, July 2013

cycle, no bottleneck is imposed by the introduction
of the stop criterion.

As can be seen in Fig. 18, new hardware
structures were added to implement the HO-BGW
acceptance criterion (indicated by the lines and
blocks in bold). Note that the computations related
to the HO-BGW criterion were distributed through
all five stages. The modifications performed on each
stage of the decoder are summarized below.

Block 1: The permutation matrix Ps is generated,
with its elements defined by psij = {0 | i ≠ sij, 1 | i =
sij }. When Ps is multiplied by the received sequence
x, the components of xare reordered such that the
first element is the most reliable one.

Blocks 2 and 3: During Gaussian elimination, it
is possible that some symbols fall into LD positions
and cannot be used in the decoding procedure. For
this reason, matrix Ps is rearranged into matrix PsI,
which will have only LI columns on its left side. In
Block 2, two auxiliary matrices are created: PsLI,
with only LI columns, and PsLD, with only LD
columns. In Block 3, these matrices are
concatenated into PsI, which has LI columns on the
left, LD columns in the center, and the remaining
columns copied directly from Ps.

Block 4: Besides generating the candidate
codewords ci, Block 4 calculates the hybrid sum x’n
= x [+] cn and two bitmasks, used to compute
conditions C1 and C2. These bitmasks are rearranged
versions of m1 and m2, sorted by reliability, and
given by m1r(i) = m1(i)·PsI

T and m2r(i) = m2(i)·PsI
T.

Block 5: Finally, conditions C1 and C2 are
calculated, as described in Section 6.5. These
calculations are simple and can be performed at the
same time as the next candidate is being generated
in Block 4.

8 Results

8.1 Fundamental Hardware-Oriented IS

Decoder
This is the initial version of the decoder shown in
Fig. 2, which does not include yet the acceptance
criterion. The VHDL description was synthesized to
a high-end Altera Stratix III FPGA
(EP3SL150F780C2) for several code sizes, as
shown in Table 5. A coverage performance of
99.0% relative to MLD was specified for all decoder
implementations. The hardware correctness was
confirmed by an exhaustive testbench simulation of
the C(7,4,3) code, which yielded correct outputs for
all 221 possible input values (7 input symbols
encoded with 3bits each).

Table 5. Synthesis Results for the Fundamental
IS Decoder.

Code Registers ALUTs fMAX
(MHz)

Latency
(cycles)

ttdMAX
(cycles)

Throughput
(Mbps)

C(7,4,3) 290 454 155.3 19 5 124,24
C(15,7,5) 763 1,359 127.7 40 12 74,49

C(24,12,8) 2,155 4,019 101.9 84 41 29,82
C(48,24,12) 31,300 61,980 74.4 667 580 3,08

Regarding silicon area usage, it was found that
logic resources utilization (look-up tables and
registers) increases almost linearly with the n×k
product; however, since the list size m also increases
for larger codes (in order to attain the same
performance relative to the MLD), the observed
growth is in fact more pronounced. It should be
noted that even the C(48,24,12) code fits in a mid-
range device of the Stratix III family, indicating that
the hardware implementation is indeed area-
efficient.

8.2 EnhancedHardware-Oriented IS
Decoder
This implementation concerns the complete decoder
(Fig. 18), with the HO-BGW acceptance test
included. It was also implemented in VHDL
language, then synthesized to a high-end FPGA of
the Altera Stratix IV family (EP4SGX70DF29C2X)

Fig. 18. Hardware implementation of the IS decoder with the HO-BGW acceptance criterion

WSEAS TRANSACTIONS on COMMUNICATIONS
R. P. Jasinski, W. Godoy Jr.,
A. Gortan, S. B. L. França, V. A. Pedroni

E-ISSN: 2224-2864 349 Issue 7, Volume 12, July 2013

for several code sizes, as shown in Table 6. The
correctness of the hardware implementation was
again confirmed by an exhaustive testbench
simulation of the C(7,4,3) code, which yielded
correct outputs for all 221 possible input values 7
input symbols encoded with 3bits each).

Table 6. Synthesis Results for the Enhanced IS
Decoder.

 C(7,4,3) C(15,7,5) C(24,12,8) C(48,24,12) Avg. Increase (*)

LUTs 894 1,688 3,095 9,197 92.0 %
Registers 860 1,729 3,011 7,556 180.0 %
fMAX (MHz) 145.3 127.6 107.9 92.7 6.0 %

(*) Compared to the fundamental decoder implementation of Fig. 2.

As can be seen, the HO-BGW requires 92%
more lookup tables (LUTs) and 180% more
registers (flip-flops), on average. Roughly speaking,
the inclusion of the HO-BGW stop test doubles the
decoder’s hardware size. On the other hand, it
provides a reduction of up to 96.8% in the number
of codewords that must be examined. Since the
maximum operating frequency stays essentially the
same, this represents a total throughput of up to 30
times the original value.

The resulting circuit is also a highly area-
efficient implementation, with the C(48,24,12) code
occupying only 20% of the smallest FPGA in the
Stratix IV family.

9 Conclusions
We have presented three improvements that made
viable the implementation of information-set
decoders purely in hardware. First, we havestudied
the effects of quantization in the decoding
performance, allowing us to choose a number of bits
that is small, and still provides a negligible
performance loss. Second, we have introduced a
procedure to select a small number of candidate
codewords, with a high likelihood of containing the
correct MLD output. Third, we have presented a
new hardware-oriented acceptance criterion, which
is highly efficient and feasible for a hardware
implementation.

Those three improvements were combined in the
implementation of an enhanced information-set
decoder purely in hardware. The proposed
architecture can implement any linear block decoder
and is highly area-efficient, with the C(48,24,12)
code occupying only 20% of the smallest FPGA in
the Stratix IV family. The inclusion of the HO-
BGW stop test roughly doubles the hardware
size;on the other hand, it provides a reduction of up
to 96.8% in the number of examined codewords.

This represents a total throughput of up to 30 times
the original value.

Quantization of the received signal is a
procedure common to all soft decoders. Our
investigation demonstrated that there is very little to
gain by using more than 3 quantization bits for each
analog symbol, and essentially no gain at all by
using 5 bits or more. The method and results
supporting this conclusion are useful for any
designer when choosing the number of quantization
bits for a decoder.

We have also presented a strategy forselecting a
number of candidate codewords that allows
achieving any desired performance level relative to
MLD. We have shown that choosing sets as small as
3% to 5% of all 2k possible values still produces
results that are practically indistinguishable from
true MLD.The most relevant conclusion is that after
inspecting just the candidates with one or two bits
flipped, the decoder already reaches a performance
very close to that of MLD (>99%); this means that
more than 99% of the bit errors that would be
corrected with MLD decoding are corrected with the
proposed approach.

Acceptance tests are one of the final steps in the
decoding process. Because they must be executed
once for each candidate word, they should not take
longer than generating such a codeword, otherwise
the test would represent a bottleneck for the entire
decoding process. We have demonstrated the
efficiency of the new HO-BGW acceptance
criterion, which provided a reduction of 96.8% in
the number of candidates evaluated for the
C(24,12,8) code. The performance difference varies
with the code length and the signal-to-noise ratio,
but it is always within 12% compared to the
common Taipale-Pursley criterion. The HO-BGW
criterion is the first acceptance criterion that allows
a direct hardware implementation.

References:
[1] R. Gallager, "Low-density parity-check codes,"

IRETrans. on Information Theory, vol. 8, no. 1,
pp. 21-28, Jan. 1962.

[2] T. Richardson, R. Urbanke, "The renaissance of
Gallager's low-density parity-check codes,"
IEEE Communications Magazine, vol. 41, no. 8,
pp. 126- 131, Aug. 2003.

[3] D. J. Taipale, M. B. Pursley, “An improvement
to generalized minimum distance decoding,”
IEEE TIT, vol. 37, pp. 167-172, Jan. 1991.

[4] B. Vucetic, V. Ponampalam, J. Vuckovic, “Low
complexity soft decision algorithms for Reed-
Solomon codes,” IEICETrans. on

WSEAS TRANSACTIONS on COMMUNICATIONS
R. P. Jasinski, W. Godoy Jr.,
A. Gortan, S. B. L. França, V. A. Pedroni

E-ISSN: 2224-2864 350 Issue 7, Volume 12, July 2013

Communications, vol. E84-B, no. 3, March
2001.

[5] G. D. Forney Jr., “Generalized minimum
distance decoding,” IEEETrans. on Information
Theory, vol. IT-12, no. 2, April 1966.

[6] E. Prange, “The use of information sets in
decoding cyclic codes,” IRE Trans. on
Information Theory, vol. IT-8, pp. 5-9, Sep.
1962.

[7] B. G. Dorsch, “A decoding algorithm for binary
block codes and j-ary output channels,” IEEE
Trans. on Information Theory, vol. IT-20, pp.
391-394, May 1974.

[8] A. Gortan, R. P. Jasinski, W. Godoy Jr., V. A.
Pedroni, “Achieving near-MLD performance
with soft information-set decoders implemented
in FPGAs,” APCCAS, Dec. 2010.

[9] L. Ribas, D. Castells, J. Carrabina, “A linear
sorter core based on a programmable register
file”, DCIS, pp. 635-640, France, 2004.

[10] D. Knuth, The Art of Computer Programming:
Sorting and Searching (vol. 3), Addison-
Wesley, 1998.

[11] W. Huffman, V. Pless, Fundamentals of Error-
Correcting Codes, Cambridge University Press,
2003.

[12] P. Sweeney, Error Control Coding From
Theory to Practice, Wiley, 2002.

[13] R. Blahut, E. Richard, Algebraic Codes for
Data Transmission, Cambridge University
Press, New York, 2003.

[14] C. Barry, N. Balakrishnam, H. Nagaraja, A first
course in order statistics, SIAM Classics in
Applied Mathematics, vol. 14, Philadelphia,
2008.

[15] B. Widrow, I. Kollár, Quantization Noise –
Round off error in Digital Computation, Signal
Processing, Control and Communications,
Cambridge University Press, New York, 2008.

[16] D. J. Barros, W. Godoy Jr., E. G. Wille, “A
new approach to the information set decoding
algorithm,” Computer Communications, vol. 20,
pp. 302-308, 1997.

[17] W. Godoy Jr., E. G. Wille, “Proposal of sub-
optimum decoding algorithm with a bound of
Voronoi region V(c0),” Computer
Communications, Vol. 21, 736-740, 1998.

[18] W. Godoy Jr., E. G. Wille, T. Cunha,
“Adaptive decoding of binary linear block codes
using information sets and erasures,” CTRQ,
Athens, 2010.

[19] W. K. Leung, W. L. Lee, A. Wu, Li Ping,
"Efficient implementation technique of LDPC
decoder," Electronics Letters, vol. 37, no. 20,
pp. 1231-1232, Sep. 2001.

[20] Zin-She Yang, Introduction to Computational
Mathematics, World Scientific, 2008.

[21] D. MacKay, R. Neal, "Near Shannon limit
performance of low density parity check codes,"
Electronics Letters, vol. 33, no. 6, pp. 457-458,
March 1997.

WSEAS TRANSACTIONS on COMMUNICATIONS
R. P. Jasinski, W. Godoy Jr.,
A. Gortan, S. B. L. França, V. A. Pedroni

E-ISSN: 2224-2864 351 Issue 7, Volume 12, July 2013

